The NeuroBayes neural network package

被引:196
作者
Feindt, M
Kerzel, U
机构
[1] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany
[2] Phi T Phys Informat Technol GmbH, D-76139 Karlsruhe, Germany
关键词
Bayes; neural network; classification; density reconstruction; data-mining; preprocessing;
D O I
10.1016/j.nima.2005.11.166
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Detailed analysis of correlated data plays a vital role in modern analyses. We present a sophisticated neural network package based on Bayesian statistics which can be used for both classification and event-by-event prediction of the complete probability density distribution for continuous quantities. The network provides numerous possibilities to automatically preprocess the input variables and uses advanced regularisation and pruning techniques to essentially eliminate the risk of overtraining. Examples from physics and industry are given. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 194
页数:5
相关论文
共 7 条
[1]  
ALBRECHT Z, 2003, THESIS U KARLSRUHE
[2]  
[Anonymous], ARXIVPHYSICS0402093
[3]  
FEINDT M, 2003, EUR K AKT SCHAD MARZ
[4]  
FEINDT M, HEPEX0102001
[5]  
FEINDT M, 2005, 5 WORKSH EU RES TRAI
[6]  
LECCI C, 2005, THESIS U KARLSRUHE
[7]  
MARINO C, 2005, THESIS U KARLSRUHE