Operator norm attainment and inner product spaces

被引:56
作者
Sain, Debmalya [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
Orthogonality; Linear operators; Inner product spaces; ORTHOGONALITY; MATRICES;
D O I
10.1016/j.laa.2013.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that a finite dimensional real norrned linear space X is an inner product space iff for any linear operator T on X, T attains its norm at e(1), e(2) is an element of S-X implies T attains its norm at span{e(1), e(2)} boolean AND S-X. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2448 / 2452
页数:5
相关论文
共 5 条
[1]   Orthogonality of matrices [J].
Benitez, Carlos ;
Fernandez, Manuel ;
Soriano, Maria L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :155-163
[2]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[3]  
Birkhoff G., 1935, Duke Math. J., V1, P169, DOI [10.1215/S0012-7094-35-00115-6. h17i, DOI 10.1215/S0012-7094-35-00115-6.H17I]
[4]   Orthogonality of matrices [J].
Li, CK ;
Schneider, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 :115-122
[5]  
Paul K., 2008, J. Anal. Appl, V6, P169