Multiwavelets for second-kind integral equations

被引:50
作者
VonPetersdorff, T
Schwab, C
Schneider, R
机构
[1] ETH ZURICH,SEMINAR ANGEW MATH,CH-8092 ZURICH,SWITZERLAND
[2] TH DARMSTADT,FACHBEREICH MATH,D-6100 DARMSTADT,GERMANY
关键词
wavelets; boundary element methods; integral equations;
D O I
10.1137/S0036142994272957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Galerkin method for an elliptic pseudodifferential operator of order zero on a two-dimensional manifold. We use piecewise linear discontinuous trial functions on a triangular mesh and describe an orthonormal wavelet basis. Using this basis we can compress the stiffness matrix from N-2 to O(n'log N) nonzero entries and still obtain (up to log N terms) the same convergence rates as for the exact Galerkin method.
引用
收藏
页码:2212 / 2227
页数:16
相关论文
共 34 条
[1]   WAVELET-LIKE BASES FOR THE FAST SOLUTION OF 2ND-KIND INTEGRAL-EQUATIONS [J].
ALPERT, B ;
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :159-184
[2]   A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS [J].
ALPERT, BK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :246-262
[3]  
[Anonymous], PSEUDODIFFERENTIAL O
[4]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[5]   MULTILEVEL MATRIX MULTIPLICATION AND FAST SOLUTION OF INTEGRAL-EQUATIONS [J].
BRANDT, A ;
LUBRECHT, AA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (02) :348-370
[6]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[7]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[8]  
COIFMAN RR, 1990, P INT C MATH KYOT JA, P879
[9]  
COSTABEL M, 1986, J REINE ANGEW MATH, V372, P34
[10]   PRINCIPLES OF BOUNDARY ELEMENT METHODS [J].
COSTABEL, M .
COMPUTER PHYSICS REPORTS, 1987, 6 (1-6) :243-274