Smallest regular and almost regular triangle-free graphs without perfect matchings

被引:0
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Perfect matching; Regular graph; Almost regular graph; Triangle-free graph; Turan type result; ORDER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is regular if the degree of each vertex of G is d and almost regular or more precisely a (d, d + 1)-graph, if the degree of each vertex of G is either d or d + 1. If d >= 2 is an integer, G a triangle-free (d, d + 1)-graph of order n without an odd component and n <= 4d, then we show in this paper that G contains a perfect matching. Using a new Turan type result, we present an analogue for triangle-free regular graphs. With respect to these results, we construct smallest connected, regular and almost regular triangle-free even order graphs without perfect matchings.
引用
收藏
页码:463 / 472
页数:10
相关论文
共 11 条
[1]  
CACCETTA L, 1994, AUSTRALAS J COMBIN, V9, P243
[2]   On the order of certain close to regular graphs without a matching of given size [J].
Klinkenberg, Sabine ;
Volkmann, Lutz .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (03) :907-918
[3]  
Klinkenberg S, 2007, ARS COMBINATORIA, V85, P99
[4]  
Klinkenberg S, 2006, AUSTRALAS J COMB, V34, P187
[5]  
König D, 1915, MATH ANN, V77, P453
[6]  
Turan P., 1941, Mat. Fiz. Lapok, V48, P436
[7]  
Tutte W.T., 1947, J LOND MATH SOC, V22, P459
[8]  
Volkmann L., 2004, AUSTRALAS J COMBIN, V29, P119
[9]  
VOLKMANN L, 1996, FDN GRAPH THEORY
[10]  
Wallis W. D., 1981, ARS COMBINATORIA, V11, P295