Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications

被引:281
作者
Croissant, Jonas G. [1 ,2 ]
Butler, Kimberly S. [3 ]
Zink, Jeffrey I. [4 ]
Brinker, C. Jeffrey [1 ,2 ]
机构
[1] Univ New Mexico, Chem & Biol Engn, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Adv Mat Lab, Ctr Microengineered Mat, Albuquerque, NM 87131 USA
[3] Sandia Natl Labs, Dept Nanobiol, POB 5800, Albuquerque, NM 87185 USA
[4] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA
基金
美国国家卫生研究院;
关键词
SUPPORTED LIPID-BILAYERS; MESOPOROUS ORGANOSILICA NANOPARTICLES; TARGETED DRUG-DELIVERY; IN-VIVO BIODISTRIBUTION; BRIDGED SILSESQUIOXANE NANOPARTICLES; HUMAN PANCREATIC-CANCER; PHOTODYNAMIC THERAPY; BREAST-CANCER; CO-DELIVERY; CONTROLLED-RELEASE;
D O I
10.1038/s41578-020-0230-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Natural silica and silicates are predominantly crystalline and constitute the most abundant components of the Earth's crust. Man-made silica is typically amorphous and manufactured in tonnage quantities for commercial use and, more recently, for burgeoning medical applications, making synthetic amorphous silica nanoparticles (SASNs) arguably the most abundant nanoparticles on Earth. Despite the abundance of silica and SASNs, misconceptions remain regarding what silica is and its medical and environmental implications. SASNs are often considered to be toxic regardless of their source, but, here, we emphasize that all silica nanoparticles are not created equal and explore how composition, synthesis, processing and environmental exposure effect toxicity. Despite having comparable size, shape and nominal composition, SASNs prepared by pyrolytic or colloidal processes can have drastically different toxicities, which, to date, is not generally recognized by the research community. In this Review, we begin with a survey of relationships between synthetic methods and material structure, followed by structure-toxicity relationships. Next, we explore the environmental implications of SASNs exposure and provide a review of the emerging biomedical uses of SASNs in therapy, imaging and theranostics. We conclude with our vision for the field and suggest that minimal SASN characterization standards are needed for reporting and understanding their biological or environmental behaviours and implications. Synthetic amorphous silica nanoparticles are produced in tonnage quantities for a range of commercial uses. In this Review, the synthesis-structure-property relationships of synthetic amorphous silica nanoparticles are outlined, with an emphasis on biomedical applications and environmental implications.
引用
收藏
页码:886 / 909
页数:24
相关论文
共 334 条
[71]   Lipid bilayer-coated curcumin-based mesoporous organosilica nanoparticles for cellular delivery [J].
Datz, Stefan ;
Engelke, Hanna ;
Schirnding, Constantin V. ;
Linh Nguyen ;
Bein, Thomas .
MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 225 :371-377
[72]   CHARACTERIZATION OF MODIFIED SILICA POWDERS BY FOURIER-TRANSFORM INFRARED-SPECTROSCOPY AND CROSS-POLARIZATION MAGIC ANGLE SPINNING NMR [J].
DEHAAN, JW ;
VANDENBOGAERT, HM ;
PONJEE, JJ ;
VANDEVEN, LJM .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1986, 110 (02) :591-600
[73]   Presence and risks of nanosilica in food products [J].
Dekkers, Susan ;
Krystek, Petra ;
Peters, Ruud J. B. ;
Lankveld, Danielle P. K. ;
Bokkers, Bas G. H. ;
van Hoeven-Arentzen, Paula H. ;
Bouwmeester, Hans ;
Oomen, Agnes G. .
NANOTOXICOLOGY, 2011, 5 (03) :393-405
[74]   Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles [J].
Desai, Diti ;
Prabhakar, Neeraj ;
Mamaeva, Veronika ;
Karaman, Didem Sen ;
Lahdeniemi, Iris A. K. ;
Sahlgren, Cecilia ;
Rosenholm, Jessica M. ;
Toivola, Diana M. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2016, 11 :299-313
[75]   Spatiotemporal control of coacervate formation within liposomes [J].
Deshpande, Siddharth ;
Brandenburg, Frank ;
Lau, Anson ;
Last, Mart G. F. ;
Spoelstra, Willem Kasper ;
Reese, Louis ;
Wunnava, Sreekar ;
Dogterom, Marileen ;
Dekker, Cees .
NATURE COMMUNICATIONS, 2019, 10 (1)
[76]   Versatile heavy metals removal via magnetic mesoporous nanocontainers [J].
Dib, S. ;
Boufatit, M. ;
Chelouaou, S. ;
Sadi-Hassaine, F. ;
Croissant, J. ;
Long, J. ;
Raehm, L. ;
Charnay, C. ;
Durand, J. -O. .
RSC ADVANCES, 2014, 4 (47) :24838-24841
[77]   Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics [J].
Dogra, Prashant ;
Adolphi, Natalie L. ;
Wang, Zhihui ;
Lin, Yu-Shen ;
Butler, Kimberly S. ;
Durfee, Paul N. ;
Croissant, Jonas G. ;
Noureddine, Achraf ;
Coker, Eric N. ;
Bearer, Elaine L. ;
Cristini, Vittorio ;
Brinker, C. Jeffrey .
NATURE COMMUNICATIONS, 2018, 9
[78]   Light or Heat? The Origin of Cargo Release from Nanoimpeller Particles Containing Upconversion Nanocrystals under IR Irradiation [J].
Dong, Juyao ;
Zink, Jeffrey I. .
SMALL, 2015, 11 (33) :4165-4172
[79]   In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care [J].
Dong, Rui-Hua ;
Jia, Yue-Xiao ;
Qin, Chong-Chong ;
Zhan, Lu ;
Yan, Xu ;
Cui, Lin ;
Zhou, Yu ;
Jiang, Xingyu ;
Long, Yun-Ze .
NANOSCALE, 2016, 8 (06) :3482-3488
[80]   Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica [J].
Dostert, Catherine ;
Petrilli, Virginie ;
Van Bruggen, Robin ;
Steele, Chad ;
Mossman, Brooke T. ;
Tschopp, Jurg .
SCIENCE, 2008, 320 (5876) :674-677