Linearity and Shift Invariance for Quantitative Magnetic Particle Imaging

被引:78
作者
Lu, Kuan [1 ]
Goodwill, Patrick W. [1 ]
Saritas, Emine U. [1 ]
Zheng, Bo [1 ]
Conolly, Steven M. [1 ]
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
关键词
Angiography; direct current (dc) recovery; direct feedthrough; filtering; interference; linearity and shift invariance; magnetic particle imaging; PERIPHERAL-NERVE STIMULATION; RELAXATION; RESOLUTION; BLOOD;
D O I
10.1109/TMI.2013.2257177
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic Particle Imaging (MPI) is a promising tracer imaging modality that employs a kidney-safe contrast agent and does not use ionizing radiation. MPI already shows high contrast and sensitivity in small animal imaging, with great potential for many clinical applications, including angiography, cancer detection, inflammation imaging, and treatment monitoring. Currently, almost all clinically relevant imaging techniques can be modeled as systems with linearity and shift invariance (LSI), characteristics crucial for quantification and diagnostic utility. In theory, MPI has been proven to be LSI. However, in practice, high-pass filters designed to remove unavoidable direct feedthrough interference also remove information crucial to ensuring LSI in MPI scans. In this work, we present a complete theoretical and experimental description of the image artifacts from filtering. We then propose and validate a robust algorithm to completely restore the lost information for the x-space MPI method. We provide the theoretical, simulated, and experimental proof that our algorithm indeed restores the LSI properties of MPI.
引用
收藏
页码:1565 / 1575
页数:11
相关论文
共 30 条
[1]   Prevalence of chronic kidney disease in the United States [J].
Coresh, Josef ;
Selvin, Elizabeth ;
Stevens, Lesley A. ;
Manzi, Jane ;
Kusek, John W. ;
Eggers, Paul ;
Van Lente, Frederick ;
Levey, Andrew S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 298 (17) :2038-2047
[2]   Relaxation in X-Space Magnetic Particle Imaging [J].
Croft, Laura R. ;
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (12) :2335-2342
[3]   The viscosity of the blood in narrow capillary tubes [J].
Fahraeus, R ;
Lindqvist, T .
AMERICAN JOURNAL OF PHYSIOLOGY, 1931, 96 (03) :562-568
[4]   Size-Dependent Relaxation Properties of Monodisperse Magnetite Nanoparticles Measured Over Seven Decades of Frequency by AC Susceptometry [J].
Ferguson, R. Matthew ;
Khandhar, Amit P. ;
Jonasson, Christian ;
Blomgren, Jakob ;
Johansson, Christer ;
Krishnan, Kannan M. .
IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) :3441-3444
[5]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[6]   Ferrohydrodynamic relaxometry for magnetic particle imaging [J].
Goodwill, P. W. ;
Tamrazian, A. ;
Croft, L. R. ;
Lu, C. D. ;
Johnson, E. M. ;
Pidaparthi, R. ;
Ferguson, R. M. ;
Khandhar, A. P. ;
Krishnan, K. M. ;
Conolly, S. M. .
APPLIED PHYSICS LETTERS, 2011, 98 (26)
[7]   Projection X-Space Magnetic Particle Imaging [J].
Goodwill, Patrick W. ;
Konkle, Justin J. ;
Zheng, Bo ;
Saritas, Emine U. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (05) :1076-1085
[8]   An x-space magnetic particle imaging scanner [J].
Goodwill, Patrick W. ;
Lu, Kuan ;
Zheng, Bo ;
Conolly, Steven M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (03)
[9]   Multidimensional X-Space Magnetic Particle Imaging [J].
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (09) :1581-1590
[10]   The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation [J].
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (11) :1851-1859