Modeling Deformable Gradient Compositions for Single-Image Super-resolution

被引:0
|
作者
Zhu, Yu [1 ]
Zhang, Yanning [1 ]
Bonev, Boyan [2 ]
Yuille, Alan L. [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian Shi, Shaanxi Sheng, Peoples R China
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
来源
2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2015年
关键词
ENHANCEMENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a single-image super-resolution method based on the gradient reconstruction. To predict the gradient field, we collect a dictionary of gradient patterns from an external set of images. We observe that there are patches representing singular primitive structures (e.g. a single edge), and non-singular ones (e.g. a triplet of edges). Based on the fact that singular primitive patches are more invariant to the scale change (i.e. have less ambiguity across different scales), we represent the non-singular primitives as compositions of singular ones, each of which is allowed some deformation. Both the input patches and dictionary elements are decomposed to contain only singular primitives. The compositional aspect of the model makes the gradient field more reliable. The deformable aspect makes the dictionary more expressive. As shown in our experimental results, the proposed method outperforms the state-of-the-art methods.
引用
收藏
页码:5417 / 5425
页数:9
相关论文
共 50 条
  • [1] Single-Image Super-Resolution: A Survey
    Yao, Tingting
    Luo, Yu
    Chen, Yantong
    Yang, Dongqiao
    Zhao, Lei
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 119 - 125
  • [2] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [3] Single-Image Super-Resolution based on Regularization with Stationary Gradient Fidelity
    Yu, Lejun
    Cao, Siming
    He, Jun
    Sun, Bo
    Dai, Feng
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [4] REGULARIZED SINGLE-IMAGE SUPER-RESOLUTION BASED ON PROGRESSIVE GRADIENT ESTIMATION
    Yu, Lejun
    Wu, Xiaoyu
    Ge, Fengxiang
    Sun, Bo
    He, Jun
    Sablatnig, Robert
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1985 - 1989
  • [5] Single-Image Super-Resolution Using Panchromatic Gradient Prior and Variational Model
    Xu, Yingying
    Li, Jianhua
    Song, Haifeng
    Du, Lei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [6] A Content Dependent Kernel For Single-Image Super-Resolution
    Saryazdi, Saman
    Saryazdi, Saeid
    Nezanabadipour, Hossein
    2013 5TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2013, : 453 - 456
  • [7] PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION
    Wang, Guangcheng
    Li, Leida
    Li, Qiaohong
    Gu, Ke
    Lu, Zhaolin
    Qian, Jiansheng
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3145 - 3149
  • [8] Multilevel and Multiscale Network for Single-Image Super-Resolution
    Yang, Yong
    Zhang, Dongyang
    Huang, Shuying
    Wu, Jiajun
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1877 - 1881
  • [9] Single-Image Super-Resolution Using Multihypothesis Prediction
    Chen, Chen
    Fowler, James E.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 608 - 612
  • [10] EXTERNAL AND INTERNAL LEARNING FOR SINGLE-IMAGE SUPER-RESOLUTION
    Wang, Shuang
    Lin, Shaopeng
    Liang, Xuefeng
    Yue, Bo
    Jiao, Licheng
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 128 - 132