ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE RADIAL P-LAPLACIAN EQUATION

被引:0
作者
Ben Othman, Sonia [1 ]
Maagli, Habib [2 ]
机构
[1] Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
[2] King Abdulaziz Univ, Coll Arts & Sci, Dept Math, Rabigh 21911, Saudi Arabia
关键词
p-Laplacian; asymptotic behavior; positive solutions; Schauder's fixed point theorem; BOUNDARY-VALUE-PROBLEMS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, uniqueness and asymptotic behavior of positive solutions to the nonlinear problem 1/A(A Phi(p)(u'))' + q(x)u(alpha) = 0, in (0, 1), lim(x -> 0) A Phi(p)(u')(x) = 0, u(1) = 0, where alpha < p - 1, Phi(p)(t) = t vertical bar t vertical bar p(-2), A is a positive differentiable function and q is a positive measurable function in (0, 1) such that for some c > 0, 1/c <= q(x)(1 - x)(beta) exp ( - integral(eta)(1-x) z(s)/s ds) <= c. Our arguments combine monotonicity methods with Karamata regular variation theory.
引用
收藏
页数:10
相关论文
共 20 条
[1]  
Agarwal R. P., 2003, MEMOIRS DIFFERENTIAL, V28, P13
[2]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[3]   Existence theorems for the one-dimensional singular p -: Laplacian equation with sign changing nonlinearities [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (01) :15-38
[4]  
[Anonymous], 2000, Lecture Notes in Math.
[5]  
[Anonymous], ELECT J DIFFERENTIAL
[6]  
Bachar I., 2008, NONLINEAR STUD, V15, P177
[7]   Radial solutions for the p-Laplacian equation [J].
Bachar, Imed ;
Ben Othman, Sonia ;
Maagli, Habib .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2198-2205
[8]   Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems [J].
Ben Othman, Sonia ;
Maagli, Habib ;
Masmoudi, Syrine ;
Zribi, Malek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4137-4150
[9]   Combined effects in nonlinear singular elliptic problems in a bounded domain [J].
Chemmam, Rym ;
Maagli, Habib ;
Masmoudi, Syrine ;
Zribi, Malek .
ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) :301-318
[10]   Extremal singular solutions for degenerate logistic-type equations in anisotropic media [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) :119-124