Predicting the efficiency of prime editing guide RNAs in human cells

被引:153
作者
Kim, Hui Kwon [1 ,2 ,3 ,4 ]
Yu, Goosang [1 ,2 ]
Park, Jinman [1 ,2 ]
Min, Seonwoo [5 ]
Lee, Sungtae [1 ]
Yoon, Sungroh [5 ,6 ,7 ]
Kim, Hyongbum Henry [1 ,2 ,3 ,4 ,8 ,9 ]
机构
[1] Yonsei Univ, Coll Med, Dept Pharmacol, Seoul, South Korea
[2] Yonsei Univ, Coll Med, Brain Korea 21 Plus Project Med Sci, Seoul, South Korea
[3] Inst Basic Sci IBS, Ctr Nanomed, Seoul, South Korea
[4] Yonsei Univ, Adv Sci Inst, Grad Program Nano Biomed Engn NanoBME, Seoul, South Korea
[5] Seoul Natl Univ, Elect & Comp Engn, Seoul, South Korea
[6] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[7] Seoul Natl Univ, Grad Sch Data Sci, Seoul, South Korea
[8] Yonsei Univ, Coll Med, Severance Biomed Sci Inst, Seoul, South Korea
[9] Yonsei Univ, Program NanoSci & Technol, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
CRISPR-CAS9; NUCLEASES; DESIGN; VARIANTS; DNA;
D O I
10.1038/s41587-020-0677-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Prime editing enables the introduction of virtually any small-sized genetic change without requiring donor DNA or double-strand breaks. However, evaluation of prime editing efficiency requires time-consuming experiments, and the factors that affect efficiency have not been extensively investigated. In this study, we performed high-throughput evaluation of prime editor 2 (PE2) activities in human cells using 54,836 pairs of prime editing guide RNAs (pegRNAs) and their target sequences. The resulting data sets allowed us to identify factors affecting PE2 efficiency and to develop three computational models to predict pegRNA efficiency. For a given target sequence, the computational models predict efficiencies of pegRNAs with different lengths of primer binding sites and reverse transcriptase templates for edits of various types and positions. Testing the accuracy of the predictions using test data sets that were not used for training, we found Spearman's correlations between 0.47 and 0.81. Our computational models and information about factors affecting PE2 efficiency will facilitate practical application of prime editing.
引用
收藏
页码:198 / 206
页数:14
相关论文
共 39 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Predicting the mutations generated by repair of Cas9-induced double-strand breaks
    Allen, Felicity
    Crepaldi, Luca
    Alsinet, Clara
    Strong, Alexander J.
    Kleshchevnikov, Vitalii
    De Angeli, Pietro
    Palenikova, Petra
    Khodak, Anton
    Kiselev, Vladimir
    Kosicki, Michael
    Bassett, Andrew R.
    Harding, Heather
    Galanty, Yaron
    Munoz-Martinez, Francisco
    Metzakopian, Emmanouil
    Jackson, Stephen P.
    Parts, Leopold
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 64 - +
  • [3] Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9
    Anders, Carolin
    Bargsten, Katja
    Jinek, Martin
    [J]. MOLECULAR CELL, 2016, 61 (06) : 895 - 902
  • [4] [Anonymous], 2016, PREPRINT
  • [5] Search-and-replace genome editing without double-strand breaks or donor DNA
    Anzalone, Andrew V.
    Randolph, Peyton B.
    Davis, Jessie R.
    Sousa, Alexander A.
    Koblan, Luke W.
    Levy, Jonathan M.
    Chen, Peter J.
    Wilson, Christopher
    Newby, Gregory A.
    Raguram, Aditya
    Liu, David R.
    [J]. NATURE, 2019, 576 (7785) : 149 - +
  • [6] Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning
    Arbab, Mandana
    Shen, Max W.
    Mok, Beverly
    Wilson, Christopher
    Matuszek, Zaneta
    Cassa, Christopher A.
    Liu, David R.
    [J]. CELL, 2020, 182 (02) : 463 - +
  • [7] Chari R, 2015, NAT METHODS, V12, P823, DOI [10.1038/NMETH.3473, 10.1038/nmeth.3473]
  • [8] Cut Site Selection by the Two Nuclease Domains of the Cas9 RNA-guided Endonuclease
    Chen, Hongfan
    Choi, Jihoon
    Bailey, Scott
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (19) : 13284 - 13294
  • [9] Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency
    Dang, Ying
    Jia, Gengxiang
    Choi, Jennie
    Ma, Hongming
    Anaya, Edgar
    Ye, Chunting
    Shankar, Premlata
    Wu, Haoquan
    [J]. GENOME BIOLOGY, 2015, 16
  • [10] Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    Doench, John G.
    Fusi, Nicolo
    Sullender, Meagan
    Hegde, Mudra
    Vaimberg, Emma W.
    Donovan, Katherine F.
    Smith, Ian
    Tothova, Zuzana
    Wilen, Craig
    Orchard, Robert
    Virgin, Herbert W.
    Listgarten, Jennifer
    Root, David E.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (02) : 184 - +