Gene Expression Data Classification Using Independent Variable Group Analysis

被引:0
作者
Zheng, Chunhou [2 ,3 ]
Zhang, Lei [1 ]
Li, Bo [3 ]
Xu, Min [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
[2] Qufu Normal Univ, Coll Informat & Commun Technol, Shandong Sheng 276826, Peoples R China
[3] Chinese Acad Sci, Inst Machine Intelligence, Intelligent Comp Lab, Hefei 230031, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT 2, PROCEEDINGS | 2008年 / 5264卷
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Gene expression data; Independent variable group analysis; Gene selection; Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarrays are capable of detecting the expression levels of thousands of genes simultaneously. In this paper, a new method for gene selection based on independent variable group analysis is proposed. In this method. we first used t-statistics method to select a part of genes from the original data. Then we selected the key genes from the selected genes by t-statistics for tumor classification using IVGA. Finally, we used SVM to classify tumors based on the key genes selected using IVGA. To validate the efficiency, the proposed method is applied to classify three different DNA microarray data sets. The prediction results show that our method is efficient and feasible.
引用
收藏
页码:243 / +
页数:3
相关论文
共 50 条
  • [31] Gene selection in a gene decision space with application to gene expression data classification
    Wang Y.
    Li Z.
    Zhang J.
    Yu G.
    Journal of Intelligent and Fuzzy Systems, 2023, 45 (03) : 5021 - 5044
  • [32] Lung cancer classification based on enhanced deep learning using gene expression data
    Yuvaraj V.
    Maheswari D.
    Measurement: Sensors, 2023, 30
  • [33] Meta-Analysis Based Variable Selection for Gene Expression Data
    Li, Quefeng
    Wang, Sijian
    Huang, Chiang-Ching
    Yu, Menggang
    Shao, Jun
    BIOMETRICS, 2014, 70 (04) : 872 - 880
  • [34] Gene selection and classification from microarray data using kernel machine
    Cho, JH
    Lee, D
    Park, JH
    Lee, IB
    FEBS LETTERS, 2004, 571 (1-3) : 93 - 98
  • [35] Gene Expression Data Classification using Support Vector Machine and Mutual Information-based Gene Selection
    Vanitha, Devi Arockia C.
    Devaraj, D.
    Venkatesulu, M.
    GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 : 13 - 21
  • [36] SVD analysis of gene expression data
    Simek, Krzysztof
    Jarzab, Michal
    MATHEMATICAL MODELING OF BIOLOGICAL SYSTEMS, VOL I: CELLULAR BIOPHYSICS, REGULATORY NETWORKS, DEVELOPMENT, BIOMEDICINE, AND DATA ANALYSIS, 2007, : 361 - +
  • [37] Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data
    Kim, Yongdai
    Kwon, Sunghoon
    Song, Seuck Heun
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1643 - 1655
  • [38] Tumor Classification Based on Non-Negative Matrix Factorization Using Gene Expression Data
    Zheng, Chun-Hou
    Ng, To-Yee
    Zhang, Lei
    Shiu, Chi-Keung
    Wang, Hong-Qiang
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2011, 10 (02) : 86 - 93
  • [39] Effective Cancer Classification based on Gene Expression Data using Multidimensional Mutual Information and ELM
    Zhu, Qun-Xiong
    Fan, Yuan
    He, Yan-Lin
    Xu, Yuan
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 954 - 958
  • [40] Feature Selection and Classification for Gene Expression Data using Evolutionary Computation
    Banka, Haider
    Dara, Suresh
    2012 23RD INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2012, : 185 - 189