Gene Expression Data Classification Using Independent Variable Group Analysis

被引:0
作者
Zheng, Chunhou [2 ,3 ]
Zhang, Lei [1 ]
Li, Bo [3 ]
Xu, Min [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
[2] Qufu Normal Univ, Coll Informat & Commun Technol, Shandong Sheng 276826, Peoples R China
[3] Chinese Acad Sci, Inst Machine Intelligence, Intelligent Comp Lab, Hefei 230031, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT 2, PROCEEDINGS | 2008年 / 5264卷
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Gene expression data; Independent variable group analysis; Gene selection; Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarrays are capable of detecting the expression levels of thousands of genes simultaneously. In this paper, a new method for gene selection based on independent variable group analysis is proposed. In this method. we first used t-statistics method to select a part of genes from the original data. Then we selected the key genes from the selected genes by t-statistics for tumor classification using IVGA. Finally, we used SVM to classify tumors based on the key genes selected using IVGA. To validate the efficiency, the proposed method is applied to classify three different DNA microarray data sets. The prediction results show that our method is efficient and feasible.
引用
收藏
页码:243 / +
页数:3
相关论文
共 50 条
  • [21] Relative evolutionary hierarchical analysis for gene expression data classification
    Czajkowski, Marcin
    Kretowski, Marek
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1156 - 1164
  • [22] Generalized discriminant analysis for tumor classification with gene expression data
    Yang, Wen-Hui
    Dai, Dao-Qing
    Yan, Hong
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 4322 - +
  • [23] Bidirectional compressive sensing for classification of gene expression data
    Xu, Xiaohua
    Fan, Baichuan
    He, Ping
    Liang, Yali
    Ding, Jie
    Lou, Yuan
    Zhang, Zhijun
    Chang, Xincheng
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (15)
  • [24] Selecting significant genes by randomization test for cancer classification using gene expression data
    Mao, Zhiyi
    Cai, Wensheng
    Shao, Xueguang
    JOURNAL OF BIOMEDICAL INFORMATICS, 2013, 46 (04) : 594 - 601
  • [25] Applying the Deep Learning Techniques to Solve Classification Tasks Using Gene Expression Data
    Babichev, Sergii
    Liakh, Igor
    Kalinina, Irina
    IEEE ACCESS, 2024, 12 : 28437 - 28448
  • [26] A genetic filter for cancer classification on gene expression data
    Kim, Yong-Hyuk
    Yoon, Yourim
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S1993 - S2002
  • [27] Hybridized KNN and SVM for gene expression data classification
    Mei, Zhen
    Shen, Qi
    Ye, Baoxian
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2009, 6 (03): : 61 - 66
  • [28] Feature Selection and Classification in gene expression cancer data
    Pavithra, D.
    Lakshmanan, B.
    2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [29] Hybridized KNN and SVM for gene expression data classification
    Mei, Zhen
    Shen, Qi
    Ye, Baoxian
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2009, 6 (01): : 61 - 66
  • [30] Gene selection in a gene decision space with application to gene expression data classification
    Wang, Yuxian
    Li, Zhaowen
    Zhang, Jie
    Yu, Guangji
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 5021 - 5044