Comparison criteria for third order functional dynamic equations with mixed nonlinearities

被引:2
作者
Akin, Elvan [1 ]
Hassan, Taher S. [2 ,3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65401 USA
[2] Univ Hail, Dept Math, Fac Sci, Hail 2440, Saudi Arabia
[3] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
关键词
Dynamic equal ions; Time scales; Comparison criteria; OSCILLATION CRITERIA; DIFFERENTIAL-EQUATIONS; ASYMPTOTIC PROPERTIES; FORCED OSCILLATION; INTERVAL CRITERIA;
D O I
10.1016/j.amc.2015.06.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate comparison criteria for third order nonlinear dynamic equations with mixed nonlinearities on time scales. Our results are essentially new. Some applications illustrating the importance of our results are included and these applications solve a problem posed in [2, Remark 3.3]. Published by Elsevier Inc.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 29 条
[1]  
Adivar M., 2014, J INEQUAL APPL, V95, P16
[2]   Hille and Nehari type criteria for third-order delay dynamic equations [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (10) :1563-1579
[3]  
[Anonymous], 2002, Universitext
[4]  
[Anonymous], AUST J MATH ANAL APP
[5]  
BARBANTI L., 2011, International Journal of Pure and Applied Mathematics, V68, P253
[6]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction With Applications, DOI [10.1007/978-1-4612-0201-1, DOI 10.1007/978-1-4612-0201-1]
[7]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9
[8]   OSCILLATION AND BOUNDEDNESS OF SOLUTIONS TO FIRST AND SECOND ORDER FORCED FUNCTIONAL DYNAMIC EQUATIONS WITH MIXED NONLINEARITIES [J].
Bohner, Martin ;
Hassan, Taher S. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (02) :242-252
[9]   A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales [J].
Dosly, O ;
Hilger, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :147-158
[10]  
Elabbasy EM, 2010, ELECTRON J DIFFER EQ