Global Well-Posedness for a 1-D Compressible Non-isothermal Model for Nematic Liquid Crystals

被引:2
作者
Tang, Tong [1 ]
Sun, Jianzhu [2 ]
机构
[1] Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Peoples R China
[2] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
关键词
Compressible; Non-isothermal; Liquid crystals; Well-posedness; MACH NUMBER LIMIT; NAVIER-STOKES EQUATIONS; CLASSICAL-SOLUTIONS; VACUUM; FLUIDS; FLOWS;
D O I
10.1007/s10440-019-00285-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove global well-posedness of strong solutions to a 1-D compressible non-isothermal model for nematic liquid crystals, provided that the initial datum satisfies a natural compatibility condition. The initial density may vanish in an open subset.
引用
收藏
页码:217 / 233
页数:17
相关论文
共 24 条
[11]   Regularity criteria for some simplified non-isothermal models for nematic liquid crystals [J].
Gu, Weijiang ;
Fan, Jishan ;
Zhou, Yong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (12) :2839-2853
[12]  
Guo B., ARXIV160303976
[13]   Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals [J].
Guo, Boling ;
Xi, Xiaoyu ;
Xie, Binqiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :1413-1460
[14]   Blow Up Criterion for Compressible Nematic Liquid Crystal Flows in Dimension Three [J].
Huang, Tao ;
Wang, Changyou ;
Wen, Huanyao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) :285-311
[15]   Strong solutions of the compressible nematic liquid crystal flow [J].
Huang, Tao ;
Wang, Changyou ;
Wen, Huanyao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2222-2265
[16]   Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations [J].
Huang, Xiangdi ;
Li, Jing ;
Xin, Zhouping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (04) :549-585
[17]   On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain [J].
Jiang, Fei ;
Jiang, Song ;
Wang, Dehua .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (12) :3369-3397
[18]   WELL-POSEDNESS FOR THE THREE-DIMENSIONAL COMPRESSIBLE LIQUID CRYSTAL FLOWS [J].
Li, Xiaoli ;
Guo, Boling .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06) :1913-1937
[19]   Recent developments of analysis for hydrodynamic flow of nematic liquid crystals [J].
Lin, Fanghua ;
Wang, Changyou .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2029)
[20]   The low Mach number limit for the compressible flow of liquid crystals [J].
Qi, Guohua ;
Xu, Jiang .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 297 :39-49