Continuous fixed-time convergent control design for stochastic super-twisting system

被引:12
作者
Guerra-Avellaneda, Fernando [1 ]
Basin, Michael [1 ,2 ]
机构
[1] Autonomous Univ Nuevo Leon, Dept Phys & Math Sci, San Nicolas De Los Garza, Nuevo Leon, Mexico
[2] ITMO Univ, St Petersburg, Russia
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2020年 / 357卷 / 16期
关键词
SLIDING-MODE CONTROL; NONLINEAR-SYSTEMS; STABILITY THEOREM; JUMP SYSTEMS; STABILIZATION;
D O I
10.1016/j.jfranklin.2019.11.052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a continuous fixed-time convergent control law driving the states of a stochastic super-twisting system at the origin for a fixed time. The stochastic super-twisting system includes both a stochastic white noise and an unbounded deterministic disturbance satisfying a Lipschitz condition. Sufficient conditions of the fixed-time convergence are obtained. Performance of the developed algorithm is verified with numerical simulations. (C) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11793 / 11806
页数:14
相关论文
共 45 条
[1]   Multivariable continuous fixed-time second-order sliding mode control: design and convergence time estimation [J].
Basin, Michael ;
Panathula, Chandrasekhara Bharath ;
Shtessel, Yuri .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1104-1111
[2]   Finite-time stability theorem of stochastic nonlinear systems [J].
Chen, Weisheng ;
Jiao, L. C. .
AUTOMATICA, 2010, 46 (12) :2105-2108
[3]  
Gu H., 2016, PTH MOMENT ALMOST SU, V5
[4]  
Hoshino K, 2013, IEEE DECIS CONTR P, P1229, DOI 10.1109/CDC.2013.6760050
[5]  
Khasminskii R, 2012, STOCH MOD APPL PROBA, V66, P1, DOI 10.1007/978-3-642-23280-0
[6]   Finite-time stabilization of stochastic nonlinear systems in strict-feedback form [J].
Khoo, Suiyang ;
Yin, Juliang ;
Man, Zhihong ;
Yu, Xinghuo .
AUTOMATICA, 2013, 49 (05) :1403-1410
[7]  
Kushner H. J., 1967, Stochastic Stability and Control
[8]   Robust exact differentiation via sliding mode technique [J].
Levant, A .
AUTOMATICA, 1998, 34 (03) :379-384
[9]   A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems [J].
Li, Hongyi ;
Wang, Yueying ;
Yao, Deyin ;
Lu, Renquan .
AUTOMATICA, 2018, 97 :404-413
[10]   Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay [J].
Liu, Hao ;
Shi, Peng ;
Karimi, Hamid Reza ;
Chadli, Mohammed .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (06) :1433-1444