Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation

被引:203
作者
Iredale, John P. [1 ]
Thompson, Alexandra [1 ]
Henderson, Neil C. [1 ]
机构
[1] Univ Edinburgh, Queens Med Res Inst, MRC Ctr Inflammat Res, Edinburgh, Midlothian, Scotland
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2013年 / 1832卷 / 07期
基金
英国医学研究理事会; 英国惠康基金;
关键词
Fibrosis; Matrix; Metalloproteinase; Macrophage; Hepatic stellate cell; HEPATIC STELLATE CELLS; NORMAL RAT-LIVER; FAT-STORING CELLS; TISSUE INHIBITOR; MESENCHYMAL TRANSITION; LIPOCYTES SYNTHESIZE; COLLAGENASE ACTIVITY; TRANSGENIC MOUSE; GENE-EXPRESSION; PRIMARY CULTURE;
D O I
10.1016/j.bbadis.2012.11.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fibrosis is a highly conserved wound healing response and represents the final common pathway of virtually all chronic inflammatory injuries. Over the past 3 decades detailed analysis of hepatic extracellular matrix synthesis and degradation using approaches incorporating human disease, experimental animal models and cell culture have highlighted the extraordinarily dynamic nature of tissue repair and remodelling in this solid organ. Furthermore emerging studies of fibrosis in other organs demonstrate that basic common mechanisms exist, suggesting that bidirectionality of the fibrotic process may not solely be the preserve of the liver. In this review we will examine the cellular and molecular mechanisms that govern extracellular matrix degradation and fibrosis resolution, and highlight how manipulation of these processes may result in the development of effective anti-fibrotic therapies. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:876 / 883
页数:8
相关论文
共 50 条
[31]   Cellular Sources of Extracellular Matrix in Hepatic Fibrosis [J].
Wells, Rebecca G. .
CLINICS IN LIVER DISEASE, 2008, 12 (04) :759-+
[32]   Another dimension to the importance of the extracellular matrix in fibrosis [J].
Laure Rittié .
Journal of Cell Communication and Signaling, 2015, 9 :99-100
[33]   Non-coding RNA-mediated epigenetic regulation of liver fibrosis [J].
Yang, Jingling ;
Tao, Hui ;
Deng, Zi-Yu ;
Lu, Chao ;
Li, Jun .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2015, 64 (11) :1386-1394
[34]   Osteoactivin attenuates skeletal muscle fibrosis after distraction osteogenesis by promoting extracellular matrix degradation/remodeling [J].
Tonogai, Ichiro ;
Takahashi, Mitsuhiko ;
Yukata, Kiminori ;
Sato, Ryosuke ;
Nikawa, Takeshi ;
Yasui, Natsuo ;
Sairyo, Koichi .
JOURNAL OF PEDIATRIC ORTHOPAEDICS-PART B, 2015, 24 (02) :162-169
[35]   Molecular Pathways Modulated by Mesenchymal Stromal Cells and Their Extracellular Vesicles in Experimental Models of Liver Fibrosis [J].
Chiabotto, Giulia ;
Pasquino, Chiara ;
Camussi, Giovanni ;
Bruno, Stefania .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
[36]   Epigenetic regulation of liver fibrosis [J].
Page, Agata ;
Mann, Derek A. .
CLINICS AND RESEARCH IN HEPATOLOGY AND GASTROENTEROLOGY, 2015, 39 :S64-S68
[37]   Fibroblast Yap/Taz Signaling in Extracellular Matrix Homeostasis and Tissue Fibrosis [J].
Chu, Cong-Qiu ;
Quan, Taihao .
JOURNAL OF CLINICAL MEDICINE, 2024, 13 (12)
[38]   Macrophage-Derived Cathepsin S Remodels the Extracellular Matrix to Promote Liver Fibrogenesis [J].
Zuo, Tao ;
Xie, Qi ;
Liu, Jinfang ;
Yang, Jing ;
Shi, Jiahui ;
Kong, Degang ;
Wang, Yin ;
Zhang, Zhenpeng ;
Gao, Huixia ;
Zeng, Dao-Bing ;
Wang, Xinxin ;
Tao, Ping ;
Wei, Wei ;
Wang, Jun ;
Li, Yuan ;
Long, Qi ;
Li, Chonghui ;
Chang, Lei ;
Ning, Huimin ;
Li, Yanchang ;
Cui, Chunping ;
Ge, Xinlan ;
Wu, Jushan ;
Li, Guangming ;
Hong, Xuechuan ;
Yang, Xiao ;
Dai, Erhei ;
He, Fuchu ;
Wu, Junzhu ;
Ruan, Yuanyuan ;
Lu, Shichun ;
Xu, Ping .
GASTROENTEROLOGY, 2023, 165 (03) :746-+
[39]   Ets factors and regulation of the extracellular matrix [J].
Trojanowska, M .
ONCOGENE, 2000, 19 (55) :6464-6471
[40]   Lung extracellular matrix and redox regulation [J].
Watson, Walter H. ;
Ritzenthaler, Jeffrey D. ;
Roman, Jesse .
REDOX BIOLOGY, 2016, 8 :305-315