The Hilbert scheme of hyperelliptic Jacobians and moduli of Picard sheaves

被引:1
作者
Ricolfi, Andrea T. [1 ,2 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
[2] Scuola Int Super Studi Avanzati, Trieste, Italy
关键词
Jacobian; Torelli morphism; Hilbert schemes; Picard sheaves; Fourier-Mukai transform;
D O I
10.2140/ant.2020.14.1381
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a hyperelliptic curve embedded in its Jacobian J via an Abel-Jacobi map. We compute the scheme structure of the Hilbert scheme component of Hilb(J) containing the Abel-Jacobi embedding as a point. We relate the result to the ramification (and to the fibres) of the Torelli morphism M-g -> A(g) along the hyperelliptic locus. As an application, we determine the scheme structure of the moduli space of Picard sheaves (introduced by Mukai) on a hyperelliptic Jacobian.
引用
收藏
页码:1381 / 1397
页数:17
相关论文
共 20 条
[1]   ON A THEOREM OF TORELLI [J].
ANDREOTTI, A .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :801-828
[2]  
Arbarello E., 1985, GRUNDLEHREN MATH WIS, VI
[3]   Donaldson-Thomas type invariants via microlocal geometry [J].
Behrend, Kai .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1307-1338
[4]   Curve counting on abelian surfaces and threefolds [J].
Bryan, Jim ;
Oberdieck, Georg ;
Pandharipande, Rahul ;
Yin, Qizheng .
ALGEBRAIC GEOMETRY, 2018, 5 (04) :398-463
[5]   C IS NOT ALGEBRAICALLY EQUIVALENT TO C- IN ITS JACOBIAN [J].
CERESA, G .
ANNALS OF MATHEMATICS, 1983, 117 (02) :285-291
[7]  
GRIFFITH.PA, 1967, J MATH MECH, V16, P789
[8]  
Grothendieck A., 1966, I HAUTES ETUDES SCI, V28, P255
[9]  
Koll┬u├r J., 1996, SERIES MODERN SURVEY, P32
[10]  
Landesman A., 2019, PREPRINT