Implementation of the cloud-based computerized interpretation system in a nationwide lung cancer screening with low-dose CT: comparison with the conventional reading system

被引:20
作者
Hwang, Eui Jin [1 ,2 ]
Goo, Jin Mo [1 ,2 ,3 ]
Kim, Hyae Young [4 ]
Yi, Jaeyoun [5 ]
Yoon, Soon Ho [1 ,2 ]
Kim, Yeol [6 ]
机构
[1] Seoul Natl Univ, Dept Radiol, Coll Med, 101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ, Inst Radiat Med, Med Res Ctr, Seoul, South Korea
[3] Seoul Natl Univ, Canc Res Inst, Seoul, South Korea
[4] Natl Canc Ctr, Dept Radiol, Goyang, South Korea
[5] Coreline Soft Inc, Seoul, South Korea
[6] Natl Canc Ctr, Natl Canc Control Inst, Goyang, South Korea
关键词
Lung neoplasms; Early detection of cancer; Tomography; X-ray computed; Image interpretation; computer-assisted; Observer variation; PULMONARY NODULES; AUTOMATIC DETECTION; AIDED DETECTION; TRIAL; VARIABILITY; VOLUMETRY; MORTALITY; IMAGES; CAD;
D O I
10.1007/s00330-020-07151-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives We aimed to compare the CT interpretation before and after the implementation of a computerized system for lung nodule detection and measurements in a nationwide lung cancer screening program. Methods Our screening program started in April 2017, with 14 participating institutions. Initially, all CTs were interpreted using interpretation systems in each institution and manual nodule measurement (conventional system). A cloud-based CT interpretation system, equipped with semi-automated measurement and CAD (computer-aided detection) for lung nodules (cloud-based system), was implemented during the project. Positive rates and performances for lung cancer diagnosis based on the Lung-RADS version 1.0 were compared between the conventional and cloud-based systems. Results A total of 1821 (M:F = 1782:39, mean age 62.7 years, 16 confirmed lung cancers) and 4666 participants (M:F = 4560:106, mean age 62.8 years, 31 confirmed lung cancers) were included in the conventional and cloud-based systems, respectively. Significantly more nodules were detected in the cloud-based system (0.76 vs. 1.07 nodule/participant,p < .001). Positive rate did not differ significantly between the two systems (9.9% vs. 11.0%,p = .211), while their variability across institutions was significantly lower in the cloud-based system (coefficients of variability, 0.519 vs. 0.311,p = .018). The Lung-RADS-based sensitivity (93.8% vs. 93.5%,p = .979) and specificity (90.9% vs. 89.6%,p = .132) did not differ significantly between the two systems. Conclusion Implementation of CAD and semi-automated measurement for lung nodules in a nationwide lung cancer screening program resulted in increased number of detected nodules and reduced variability in positive rates across institutions.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 36 条
[1]  
Abe Y, 2005, ANTICANCER RES, V25, P483
[2]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[3]   A review of lung cancer screening and the role of computer-aided detection [J].
Al Mohammad, B. ;
Brennan, P. C. ;
Mello-Thoms, C. .
CLINICAL RADIOLOGY, 2017, 72 (06) :433-442
[4]  
American College of Radiology, 2014, LUNG RADS VERS 1 0 A
[5]   Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society [J].
Bankier, Alexander A. ;
MacMahon, Heber ;
Goo, Jin Mo ;
Rubin, Geoffrey D. ;
Schaefer-Prokop, Cornelia M. ;
Naidich, David P. .
RADIOLOGY, 2017, 285 (02) :584-600
[6]   Randomized Study on Early Detection of Lung Cancer with MSCT in Germany Results of the First 3 Years of Follow-up After Randomization [J].
Becker, N. ;
Motsch, E. ;
Gross, M. -L. ;
Eigentopf, A. ;
Heussel, C. P. ;
Dienemann, H. ;
Schnabel, P. A. ;
Eichinger, M. ;
Optazaite, D. -E. ;
Puderbach, M. ;
Wielpuetz, M. ;
Kauczor, H. -U. ;
Tremper, J. ;
Delorme, S. .
JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (06) :890-896
[7]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[8]  
Brown MS, 2014, EUR RADIOL, V24, P2719, DOI 10.1007/s00330-014-3329-0
[9]   A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: What is the minimum increase in size to detect growth in repeated CT examinations [J].
de Hoop, Bartjan ;
Gietema, Hester ;
van Ginneken, Bram ;
Zanen, Pieter ;
Groenewegen, Gerard ;
Prokop, Mathias .
EUROPEAN RADIOLOGY, 2009, 19 (04) :800-808
[10]   This Week in the Journal [J].
de Koning, H. J. ;
van der Aalst, C. M. ;
de Jong, P. A. ;
Scholten, E. T. ;
Nackaerts, K. ;
Heuvelmans, M. A. ;
Lammers, J. -W. J. ;
Weenink, C. ;
Yousaf-Khan, U. ;
Horeweg, N. ;
van't Westeinde, S. ;
Prokop, M. ;
Mali, W. P. ;
Hoesein, F. A. A. Mohamed ;
van Ooijen, P. M. A. ;
Aerts, J. G. J. V. ;
den Bakker, M. A. ;
Thunnissen, E. ;
Verschakelen, J. ;
Vliegenthart, R. ;
Walter, J. E. ;
ten Haaf, K. ;
Groen, H. J. M. ;
Oudkerk, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) :503-513