Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte

被引:95
作者
Qin, Wei [1 ]
Li, Shuguang [1 ,2 ]
Yao, Yuhong [2 ]
Xin, Xujun [1 ]
Xue, Jianrong [1 ]
机构
[1] Yanshan Univ, Coll Sci, Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
基金
中国国家自然科学基金;
关键词
Surface plasmon resonance sensor; Microstructured optical fiber; Self-calibration;
D O I
10.1016/j.optlaseng.2014.01.003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a theoretical investigation on an analyte-filled core self-calibration microstructured optical fiber plasmonic refractive index sensor. The proposed microstructured optical fiber sensor introduces the concept of simultaneous detection in different ranges of wavelength because the sensing performance of the sensor in different wavelength ranges is relatively high, which will be useful for high accuracy measurement. The resonant peak 1 and peak 2 are stronger and more sensitive to the variation of analyte refractive index than any other peaks in this kind of microstructured optical fiber. An average refractive index sensitivity of -4354.3 nm/RIU (refractive index unit) and 2280 nm/RIU in the dynamic index range from 1.46 to 1.485 as well as -2660 nm/RIU and -4240 nm/RIU from 1.50 to 1.52 corresponding to the peak 1 and peak 2 can be obtained, respectively. The self-calibration sensor demonstrates high linearity and accuracy. The influence of the structural parameters on the plasmonic excitations is also studied, with a view of turning and optimizing the resonant spectrum. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 26 条
[1]  
Agrawal G. P, 2001, NONLINEAR FIBER OPTI
[2]   Coupling dielectric waveguide modes to surface plasmon polaritons [J].
Ditlbacher, H. ;
Galler, N. ;
Koller, D. M. ;
Hohenau, A. ;
Leitner, A. ;
Aussenegg, F. R. ;
Krenn, J. R. .
OPTICS EXPRESS, 2008, 16 (14) :10455-10464
[3]   Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber [J].
Du, Y. ;
Li, S. -G. ;
Liu, S. ;
Zhu, X. -P. ;
Zhang, X. -X. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 109 (01) :65-74
[4]   Fabrication of functional microstructured optical fibers through a selective-filling technique [J].
Huang, YY ;
Xu, Y ;
Yariv, A .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5182-5184
[5]   Fluid-Filled Solid-Core Photonic Bandgap Fibers [J].
Kuhlmey, Boris T. ;
Eggleton, Benjamin J. ;
Wu, Darran K. C. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (11) :1617-1630
[6]   Current status of micro- and nano-structured optical fiber sensors [J].
Lee, Byoungho ;
Roh, Sookyoung ;
Park, Junghyun .
OPTICAL FIBER TECHNOLOGY, 2009, 15 (03) :209-221
[7]   Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber [J].
Lee, H. W. ;
Schmidt, M. A. ;
Tyagi, H. K. ;
Sempere, L. Prill ;
Russell, P. St. J. .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[8]   Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel [J].
Lee, H. W. ;
Schmidt, M. A. ;
Uebel, P. ;
Tyagi, H. ;
Joly, N. Y. ;
Scharrer, M. ;
Russell, P. St. J. .
OPTICS EXPRESS, 2011, 19 (09) :8200-8207
[9]   Selective filling of photonic crystal fibres [J].
Nielsen, K ;
Noordegraaf, D ;
Sorensen, T ;
Bjarklev, A ;
Hansen, TP .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2005, 7 (08) :L13-L20
[10]   Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications [J].
Peng, W ;
Banerji, S ;
Kim, YC ;
Booksh, KS .
OPTICS LETTERS, 2005, 30 (22) :2988-2990