Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction

被引:20
作者
Simmons, Lisa M. [1 ]
Montgomery, Janet [2 ]
Beaumont, Julia [3 ]
Davis, Graham R. [1 ]
Al-Jawad, Maisoon [1 ]
机构
[1] Queen Mary Univ London, Inst Dent, Barts & London Sch Med & Dent, London E1 4NS, England
[2] Univ Durham, Dept Archaeol, Durham DH1 3LE, England
[3] Univ Bradford, Sch Life Sci, Bradford BD7 1DP, W Yorkshire, England
基金
英国惠康基金;
关键词
Biomineralization; Synchrotron X-ray diffraction; Hydroxyapatite; Texture; Preferred orientation; Enamel; SCHREGER BAND PATTERNS; TOOTH; TEXTURE; ORIENTATION;
D O I
10.1016/j.archoralbio.2013.08.012
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objective: The complex biological, physicochemical process of human dental enamel formation begins in utero and for most teeth takes several years to complete. Lost enamel tissue cannot regenerate, therefore a better understanding of the spatial and temporal progression of mineralization of this tissue is needed in order to design improved in vivo mineral growth processes for regenerative dentistry and allow the possibility to grow a synthetic whole or partial tooth. Method: Human dental enamel samples across a range of developmental stages available through archaeological collections have been used to explore the spatial and temporal progression of enamel biomineralization. Position sensitive synchrotron X-ray diffraction was used to quantify spatial and temporal variations in crystallite organization, lattice parameters and crystallite thickness at three different stages in enamel maturation. In addition X-ray microtomography was used to study mineral content distributions. Results: An inverse correlation was found between the spatial variation in mineral content and the distribution of crystallite organization and thickness as a function of time during enamel maturation. Combined X-ray microtomography and synchrotron X-ray diffraction results show that as enamel matures the mineral content increases and the mineral density distribution becomes more homogeneous. Starting concurrently but proceeding at a slower rate, the enamel crystallites become more oriented and larger; and the crystallite organization becomes spatially more complex and heterogeneous. Conclusion: During the mineralization of human dental enamel, the rate of mineral formation and mineral organization are not identical. Whilst the processes start simultaneously, full mineral content is achieved earlier, and crystallite organization is slower and continues for longer. These findings provide detailed insights into mineral development in human dental enamel which can inform synthetic biomimetic approaches for the benefit of clinical dentistry. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1726 / 1734
页数:9
相关论文
共 35 条
  • [1] Three dimensional mapping of texture in dental enamel
    Al-Jawad, M.
    Simmons, L. M.
    Steuwer, A.
    Kilcoyne, S. H.
    Shore, R. C.
    Cywinski, R.
    Wood, D. J.
    [J]. BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 877 - +
  • [2] 2D mapping of texture and lattice parameters of dental enamel
    Al-Jawad, Maisoon
    Steuwer, Axel
    Kilcoyne, Susan H.
    Shore, Roger C.
    Cywinski, Robert
    Wood, David J.
    [J]. BIOMATERIALS, 2007, 28 (18) : 2908 - 2914
  • [3] Brief Communication: The London Atlas of Human Tooth Development and Eruption
    AlQahtani, S. J.
    Hector, M. P.
    Liversidge, H. M.
    [J]. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2010, 142 (03) : 481 - 490
  • [4] Beaumont J., 2007, THESIS U BRADFORD
  • [5] Transient amorphous calcium phosphate in forming enamel
    Beniash, Elia
    Metzler, Rebecca A.
    Lam, Raymond S. K.
    Gilbert, P. U. P. A.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2009, 166 (02) : 133 - 143
  • [6] BERKOVITZ B, 2002, ORAL ANATOMY HIST EM
  • [7] Boyde A, 1997, CIBA F SYMP, V205, P18
  • [8] Brudevold F., 1967, STRUCTURAL CHEM ORG, V2, P247
  • [9] Davis G, 2010, P SOC PHOTO-OPT INS, V7804
  • [10] Nanostructure of healthy and caries-affected human teeth
    Deyhle, Hans
    Bunk, Oliver
    Mueller, Bert
    [J]. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2011, 7 (06) : 694 - 701