Exact spatiotemporal soliton solutions to the generalized three-dimensional nonlinear Schrodinger equation in optical fiber communication

被引:7
作者
Wang, Xiaoli [1 ]
Yang, Jie [2 ]
机构
[1] Qilu Univ Technol, Sch Sci, Jinan 250353, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Sci, Beijing 100192, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
nonlinear Schrodinger equation; solitary wave; spatiotemporal soliton; similarity transformations; BOSE-EINSTEIN CONDENSATE; MATTER-WAVE SOLITONS;
D O I
10.1186/s13662-015-0683-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the exact spatiotemporal soliton solutions of the generalized -dimensional nonlinear Schrodinger equation with varying coefficients in optical fiber communication are obtained explicitly by using the similarity transformation. In addition, the propagation characteristics of the spatiotemporal optical solitons which can be dramatically affected by the complicated group velocity dispersion and self-phase modulation are discussed in detail.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 30 条
  • [1] Ablowitz M.J., 1981, SOLITON INVERSE SCAT
  • [2] Localized nonlinear waves in systems with time- and space-modulated nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    Konotop, Vladimir V.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (16)
  • [3] Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    Torres, Pedro J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [4] EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS
    BRADLEY, CC
    SACKETT, CA
    TOLLETT, JJ
    HULET, RG
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (09) : 1687 - 1690
  • [5] Exact bright and dark spatial soliton solutions in saturable nonlinear media
    Calvo, Gabriel F.
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1791 - 1798
  • [7] Ma W.X., 2011, Studies Nonl. Sci, V2, P140
  • [8] Partial differential equations possessing Frobenius integrable decompositions
    Ma, Wen-Xiu
    Wu, Hongyou
    He, Jingsong
    [J]. PHYSICS LETTERS A, 2007, 364 (01) : 29 - 32
  • [9] Trilinear equations, Bell polynomials, and resonant solutions
    Ma, Wen-Xiu
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (05) : 1139 - 1156
  • [10] Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm
    Ma, Wen-Xiu
    Zhu, Zuonong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11871 - 11879