Seasonal cycle of CO2 from the sea ice edge to island blooms in the Scotia Sea, Southern Ocean

被引:13
|
作者
Jones, Elizabeth M. [1 ,2 ]
Bakker, Dorothee C. E. [2 ]
Venables, Hugh J. [3 ]
Hardman-Mountford, Nick J. [4 ]
机构
[1] Univ Groningen, Ctr Energy & Environm Sci, Energy & Sustainabil Res Inst Groningen, NL-9747 AG Groningen, Netherlands
[2] Univ E Anglia, Ctr Ocean & Atmospher Sci, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[3] British Antarctic Survey, Cambridge CB3 0ET, England
[4] Commonwealth Sci & Ind Res Org, Oceans & Atmosphere Flagship, Floreat, WA 6014, Australia
关键词
Oceanic carbon dioxide; Scotia Sea; Southern Ocean; Sea ice; South Georgia bloom; Biological carbon uptake; MICROPLANKTON COMMUNITY STRUCTURE; WEDDELL SEA; PHYTOPLANKTON BLOOM; TEMPORAL VARIATION; IRON ENRICHMENT; CARBONIC-ACID; HIGH-NUTRIENT; GEORGIA; WATER; PRODUCTIVITY;
D O I
10.1016/j.marchem.2015.06.031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Scotia Sea region contains some of the most productive waters of the Southern Ocean. It is also a dynamic region through the interaction of deep water masses with the atmosphere. We present a first seasonally-resolved time series of the fugacity of CO2 (fCO(2)) from spring 2006, summer 2008, autumn 2009 and winter (potential temperature minimum) along a 1000 km transect from the pack ice to the Polar Front to quantify the effects of biology and temperature on oceanic fCO(2). Substantial spring and summer decreases in sea surface fCO(2) occurred in phytoplankton blooms that developed in the naturally iron-fertilised waters downstream (north) of South Georgia island (54-55 degrees S, 36-38 degrees W) and following sea ice melt (in the seasonal ice zone). The largest seasonal fCO(2) amplitude (Delta fCO(2)) of -159 mu atm was found in the South Georgia bloom. In this region, biological carbon uptake dominated the seasonal signal, reducing the winter maxima in oceanic fCO(2) by 257 mu atm by the summer. In the Weddell-Scotia Confluence, the southern fringe of the Scotia Sea, the shift from wintertime CO2-rich conditions in ice covered waters to CO2 undersaturation in the spring blooms during and upon sea ice melt created strong seasonality in oceanic fCO(2). Temperature effects on oceanic fCO(2) ranged from Delta fCO(2) (sst) of similar to 55 mu atm in the seasonal ice zone to almost double that downstream of South Georgia (98 mu atm). The seasonal cycle of surface water fCO(2) in the high-nutrient low-chlorophyll region of the central Scotia Sea had the weakest biological control and lowest seasonality. Basin-wide biological processes dominated the seasonal control on oceanic fCO(2) (Delta fCO(2) (bio) of 159 mu atm), partially compensated (43%) by moderate temperature control (Delta fCO(2) (sst) of 68 mu atm). The patchwork of productivity across the Scotia Sea creates regions of seasonally strong biological uptake of CO2 in the Southern Ocean. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:490 / 500
页数:11
相关论文
共 50 条
  • [41] Sea-air CO2 Flux in the South Yellow Sea Based on Seasonal Underway Observations
    Kim, Dongseon
    Cho, Sosul
    Choi, Dong Han
    OCEAN SCIENCE JOURNAL, 2024, 59 (04)
  • [42] Reassessing Southern Ocean Air-Sea CO2 Flux Estimates With the Addition of Biogeochemical Float Observations
    Bushinsky, Seth M.
    Landschuetzer, Peter
    Roedenbeck, Christian
    Gray, Alison R.
    Baker, David
    Mazloff, Matthew R.
    Resplandy, Laure
    Johnson, Kenneth S.
    Sarmiento, Jorge L.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2019, 33 (11) : 1370 - 1388
  • [43] Importance of water mass formation regions for the air-sea CO2 flux estimate in the Southern Ocean
    Barbero, Leticia
    Boutin, Jacqueline
    Merlivat, Liliane
    Martin, Nicolas
    Takahashi, Taro
    Sutherland, Stewart C.
    Wanninkhof, Rik
    GLOBAL BIOGEOCHEMICAL CYCLES, 2011, 25
  • [44] Sea Salt Sodium Record in a Shallow Ice Core from East Antarctica as a Potential Proxy of the Antarctic Sea Ice Extent in Southern Indian Ocean
    Yang Jiao
    Du Zhiheng
    Xiao Cunde
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2019, 18 (06) : 1351 - 1359
  • [45] Sea Salt Sodium Record in a Shallow Ice Core from East Antarctica as a Potential Proxy of the Antarctic Sea Ice Extent in Southern Indian Ocean
    Jiao Yang
    Zhiheng Du
    Cunde Xiao
    Journal of Ocean University of China, 2019, 18 : 1351 - 1359
  • [46] Sea Salt Sodium Record in a Shallow Ice Core from East Antarctica as a Potential Proxy of the Antarctic Sea Ice Extent in Southern Indian Ocean
    YANG Jiao
    DU Zhiheng
    XIAO Cunde
    Journal of Ocean University of China, 2019, 18 (06) : 1351 - 1359
  • [47] Annual cycle of air-sea CO2 exchange in an Arctic Polynya Region
    Else, B. G. T.
    Papakyriakou, T. N.
    Asplin, M. G.
    Barber, D. G.
    Galley, R. J.
    Miller, L. A.
    Mucci, A.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2013, 27 (02) : 388 - 398
  • [48] A new snailfish species, Paraliparis orcadensis sp nov (Pisces: Scorpaeniformes) from the Scotia Sea (Southern Ocean)
    Matallanas, J
    Pequeño, G
    POLAR BIOLOGY, 2000, 23 (04) : 298 - 300
  • [49] Rapid physically driven inversion of the air-sea ice CO2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt
    Nomura, Daiki
    Eicken, Hajo
    Gradinger, Rolf
    Shirasawa, Kunio
    CONTINENTAL SHELF RESEARCH, 2010, 30 (19) : 1998 - 2004
  • [50] Antarctic Sea Ice Expansion, Driven by Internal Variability, in the Presence of Increasing Atmospheric CO2
    Singh, H. A.
    Polvani, L. M.
    Rasch, P. J.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (24) : 14762 - 14771