Seasonal cycle of CO2 from the sea ice edge to island blooms in the Scotia Sea, Southern Ocean

被引:13
|
作者
Jones, Elizabeth M. [1 ,2 ]
Bakker, Dorothee C. E. [2 ]
Venables, Hugh J. [3 ]
Hardman-Mountford, Nick J. [4 ]
机构
[1] Univ Groningen, Ctr Energy & Environm Sci, Energy & Sustainabil Res Inst Groningen, NL-9747 AG Groningen, Netherlands
[2] Univ E Anglia, Ctr Ocean & Atmospher Sci, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[3] British Antarctic Survey, Cambridge CB3 0ET, England
[4] Commonwealth Sci & Ind Res Org, Oceans & Atmosphere Flagship, Floreat, WA 6014, Australia
关键词
Oceanic carbon dioxide; Scotia Sea; Southern Ocean; Sea ice; South Georgia bloom; Biological carbon uptake; MICROPLANKTON COMMUNITY STRUCTURE; WEDDELL SEA; PHYTOPLANKTON BLOOM; TEMPORAL VARIATION; IRON ENRICHMENT; CARBONIC-ACID; HIGH-NUTRIENT; GEORGIA; WATER; PRODUCTIVITY;
D O I
10.1016/j.marchem.2015.06.031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Scotia Sea region contains some of the most productive waters of the Southern Ocean. It is also a dynamic region through the interaction of deep water masses with the atmosphere. We present a first seasonally-resolved time series of the fugacity of CO2 (fCO(2)) from spring 2006, summer 2008, autumn 2009 and winter (potential temperature minimum) along a 1000 km transect from the pack ice to the Polar Front to quantify the effects of biology and temperature on oceanic fCO(2). Substantial spring and summer decreases in sea surface fCO(2) occurred in phytoplankton blooms that developed in the naturally iron-fertilised waters downstream (north) of South Georgia island (54-55 degrees S, 36-38 degrees W) and following sea ice melt (in the seasonal ice zone). The largest seasonal fCO(2) amplitude (Delta fCO(2)) of -159 mu atm was found in the South Georgia bloom. In this region, biological carbon uptake dominated the seasonal signal, reducing the winter maxima in oceanic fCO(2) by 257 mu atm by the summer. In the Weddell-Scotia Confluence, the southern fringe of the Scotia Sea, the shift from wintertime CO2-rich conditions in ice covered waters to CO2 undersaturation in the spring blooms during and upon sea ice melt created strong seasonality in oceanic fCO(2). Temperature effects on oceanic fCO(2) ranged from Delta fCO(2) (sst) of similar to 55 mu atm in the seasonal ice zone to almost double that downstream of South Georgia (98 mu atm). The seasonal cycle of surface water fCO(2) in the high-nutrient low-chlorophyll region of the central Scotia Sea had the weakest biological control and lowest seasonality. Basin-wide biological processes dominated the seasonal control on oceanic fCO(2) (Delta fCO(2) (bio) of 159 mu atm), partially compensated (43%) by moderate temperature control (Delta fCO(2) (sst) of 68 mu atm). The patchwork of productivity across the Scotia Sea creates regions of seasonally strong biological uptake of CO2 in the Southern Ocean. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:490 / 500
页数:11
相关论文
共 50 条
  • [21] The Impact of Orbital Precession on Air-Sea CO2 Exchange in the Southern Ocean
    Persch, Cole F.
    Dinezio, Pedro
    Lovenduski, Nicole S.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (21)
  • [22] Reconstruction of the seasonal cycle of air-sea CO2 fluxes in the Strait of Gibraltar
    de la Paz, Mercedes
    Huertas, Emma M.
    Padin, Xose-Antonio
    Gonzalez-Davila, Melchor
    Santana-Casiano, Magdalena
    Forja, Jesus M.
    Orbi, Abdellatif
    Perez, Fiz F.
    Rios, Aida F.
    MARINE CHEMISTRY, 2011, 126 (1-4) : 155 - 162
  • [23] Southern Ocean sea ice and its wider linkages: insights revealed from models and observations
    Parkinson, CL
    ANTARCTIC SCIENCE, 2004, 16 (04) : 387 - 400
  • [24] Majority of Southern Ocean Seasonal Sea Ice Zone Bloom Net Community Production Precedes Total Ice Retreat
    Mcclish, S.
    Bushinsky, S. M.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (20)
  • [26] Constraining the dating of late Quaternary marine sediment records from the Scotia Sea (Southern Ocean)
    Xiao, Wenshen
    Frederichs, Thomas
    Gersonde, Rainer
    Kuhn, Gerhard
    Esper, Oliver
    Zhang, Xu
    QUATERNARY GEOCHRONOLOGY, 2016, 31 : 97 - 118
  • [27] The seasonal cycle of ocean-atmosphere CO2 flux in Ryder Bay, west Antarctic Peninsula
    Legge, Oliver J.
    Bakker, Dorothee C. E.
    Johnson, Martin T.
    Meredith, Michael P.
    Venables, Hugh J.
    Brown, Peter J.
    Lee, Gareth A.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (08) : 2934 - 2942
  • [28] Terrigenous sediment supply in the Scotia Sea (Southern Ocean):: response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula
    Diekmann, B
    Kuhn, G
    Rachold, V
    Abelmann, A
    Brathauer, U
    Fütterer, DK
    Gersonde, R
    Grobe, H
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2000, 162 (3-4) : 357 - 387
  • [29] Characterizing the seasonal cycle of upper-ocean flows under multi-year sea ice
    Mensa, Jean A.
    Timmermans, M. -L.
    OCEAN MODELLING, 2017, 113 : 115 - 130
  • [30] An Overview of Antarctic Sea Ice in the Community Earth System Model Version 2, Part I: Analysis of the Seasonal Cycle in the Context of Sea Ice Thermodynamics and Coupled Atmosphere-Ocean-Ice Processes
    Singh, Hansi K. A.
    Landrum, Laura
    Holland, Marika M.
    Bailey, David A.
    DuVivier, Alice K.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (03)