Structural Drag Reduction in Taylor-Couette Flow

被引:0
作者
Xue, Ya-Bo [1 ]
Yao, Zhen-Qiang [1 ,2 ]
Li, Cang-Xue [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[3] Harbin Elect Machine AC DC Motor Co Ltd, Harbin 150040, Peoples R China
来源
MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2 | 2013年 / 300-301卷
关键词
Canned motor pump; Taylor-Couette flow; drag reduction;
D O I
10.4028/www.scientific.net/AMM.300-301.285
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Energy consumption of fluid machinery, especially for canned motor pump that rotates in water, increases sharply as radius or speed increases. It not only leads to low efficiency of the pump, but also probably suppresses heat transfer between stator winding and water. According to researches on Taylor-Couette flow, dimensionless torque decreases obviously when both cylinders rotate in certain speed ratio. It inspires us to propose a structural design to realizing drag reduction in Taylor-Couette flow system, which has simple structure but huge potential.
引用
收藏
页码:285 / +
页数:2
相关论文
共 50 条
[31]   Flow pattern and stability of pseudoplastic axial Taylor-Couette flow [J].
Ashrafi, Nariman ;
Hazbavi, Abbas .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (08) :905-917
[32]   Optimal Taylor-Couette flow: radius ratio dependence [J].
Ostilla-Monico, Rodolfo ;
Huisman, Sander G. ;
Jannink, Tim J. G. ;
Van Gils, Dennis P. M. ;
Verzicco, Roberto ;
Grossmann, Siegfried ;
Sun, Chao ;
Lohse, Detlef .
JOURNAL OF FLUID MECHANICS, 2014, 747 :1-29
[33]   Geometrical dependence of optimal bounds in Taylor-Couette flow [J].
Kumar, Anuj .
JOURNAL OF FLUID MECHANICS, 2022, 948
[34]   Optimal Taylor-Couette flow: direct numerical simulations [J].
Ostilla, Rodolfo ;
Stevens, Richard J. A. M. ;
Grossmann, Siegfried ;
Verzicco, Roberto ;
Lohse, Detlef .
JOURNAL OF FLUID MECHANICS, 2013, 719 :14-46
[35]   THE EFFECT OF A CORIOLIS-FORCE ON TAYLOR-COUETTE FLOW [J].
WIENER, RJ ;
HAMMER, PW ;
SWANSON, CE ;
SAMUELS, DC ;
DONNELLY, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (5-6) :913-926
[36]   Stability of Taylor-Couette flow with oscillatory radial throughflow [J].
Wang, Cheng-Cheng ;
Gao, Peng ;
Lu, Xi-Yun .
JOURNAL OF FLUID MECHANICS, 2024, 1001
[37]   Torque in Taylor-Couette flow of viscoelastic polymer solutions [J].
Martinez-Arias, Borja ;
Peixinho, Jorge .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2017, 247 :221-228
[38]   Taylor-Couette flow in the narrow-gap limit [J].
Nagata, Masato .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2246)
[39]   Direct numerical simulation of turbulent Taylor-Couette flow [J].
Pirro, Davide ;
Quadrio, Maurizio .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2008, 27 (05) :552-566
[40]   Quantitative investigation of the transition process in Taylor-Couette flow [J].
Tu, Xin Cheng ;
Liu, Dong ;
Kim, Hyoung-Bum .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (02) :407-412