Semi-Supervised Multimodal Relevance Vector Regression Improves Cognitive Performance Estimation from Imaging and Biological Biomarkers

被引:22
作者
Cheng, Bo [1 ,2 ,3 ]
Zhang, Daoqiang [1 ,2 ,3 ]
Chen, Songcan [1 ]
Kaufer, Daniel I. [4 ]
Shen, Dinggang [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
[2] Univ N Carolina, Alzheimers Dis Neuroimaging Initiat, Dept Radiol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, BRIC, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Neurol, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Alzheimer's disease (AD); Mild cognitive impairment (MCI); Semi-supervised learning; Relevance vector regression (RVR); Multimodality; DIMENSIONAL PATTERN-CLASSIFICATION; ALZHEIMERS-DISEASE; CSF BIOMARKERS; AD CLASSIFICATION; APOLIPOPROTEIN-E; CLINICAL-CHANGE; RATING-SCALE; FDG-PET; IMPAIRMENT; ATROPHY;
D O I
10.1007/s12021-013-9180-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate estimation of cognitive scores for patients can help track the progress of neurological diseases. In this paper, we present a novel semi-supervised multimodal relevance vector regression (SM-RVR) method for predicting clinical scores of neurological diseases from multimodal imaging and biological biomarker, to help evaluate pathological stage and predict progression of diseases, e.g., Alzheimer's diseases (AD). Unlike most existing methods, we predict clinical scores from multimodal (imaging and biological) biomarkers, including MRI, FDG-PET, and CSF. Considering that the clinical scores of mild cognitive impairment (MCI) subjects are often less stable compared to those of AD and normal control (NC) subjects due to the heterogeneity of MCI, we use only the multimodal data of MCI subjects, but no corresponding clinical scores, to train a semi-supervised model for enhancing the estimation of clinical scores for AD and NC subjects. We also develop a new strategy for selecting the most informative MCI subjects. We evaluate the performance of our approach on 202 subjects with all three modalities of data (MRI, FDG-PET and CSF) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results show that our SM-RVR method achieves a root-mean-square error (RMSE) of 1.91 and a correlation coefficient (CORR) of 0.80 for estimating the MMSE scores, and also a RMSE of 4.45 and a CORR of 0.78 for estimating the ADAS-Cog scores, demonstrating very promising performances in AD studies.
引用
收藏
页码:339 / 353
页数:15
相关论文
共 49 条
[1]   Semi-supervised Learning [J].
Adams, Niall .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 :530-530
[2]   Regularization and semi-supervised learning on large graphs [J].
Belkin, M ;
Matveeva, I ;
Niyogi, P .
LEARNING THEORY, PROCEEDINGS, 2004, 3120 :624-638
[3]   Semi-supervised learning on Riemannian manifolds [J].
Belkin, M ;
Niyogi, P .
MACHINE LEARNING, 2004, 56 (1-3) :209-239
[4]  
Belkin M, 2006, J MACH LEARN RES, V7, P2399
[5]   Longitudinal changes of CSF biomarkers in memory clinic patients [J].
Bouwman, F. H. ;
van der Flier, W. M. ;
Schoonenboom, N. S. M. ;
van Elk, E. J. ;
Kok, A. ;
Rijmen, F. ;
Blankenstein, M. A. ;
Scheltens, P. .
NEUROLOGY, 2007, 69 (10) :1006-1011
[6]   CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment [J].
Bouwman, F. H. f ;
Schoonenboom, S. N. M. ;
van der Flier, W. M. ;
van Elk, E. J. ;
Kok, A. ;
Barkhof, F. ;
Blankenstein, M. A. ;
Scheltens, Ph .
NEUROBIOLOGY OF AGING, 2007, 28 (07) :1070-1074
[7]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373
[8]   Cognitive domain decline in healthy apolipoprotein E ε4 Homozygotes before the diagnosis of mild cognitive impairment [J].
Caselli, Richard J. ;
Reiman, Eric M. ;
Locke, Dona E. C. ;
Hutton, Michael L. ;
Hentz, Joseph G. ;
Hoffman-Snyder, Charlene ;
Woodruff, Bryan K. ;
Alexander, Gene E. ;
Osborne, David .
ARCHIVES OF NEUROLOGY, 2007, 64 (09) :1306-1311
[9]   Longitudinal Modeling of Age-Related Memory Decline and the APOE ε4 Effect [J].
Caselli, Richard J. ;
Dueck, Amylou C. ;
Osborne, David ;
Sabbagh, Marwan N. ;
Connor, Donald J. ;
Ahern, Geoffrey L. ;
Baxter, Leslie C. ;
Rapcsak, Steven Z. ;
Shi, Jiong ;
Woodruff, Bryan K. ;
Locke, Dona E. C. ;
Snyder, Charlene Hoffman ;
Alexander, Gene E. ;
Rademakers, Rosa ;
Reiman, Eric M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 361 (03) :255-263
[10]   FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment [J].
Chételat, G ;
Eustache, F ;
Viader, F ;
De la Sayette, V ;
Pélerin, A ;
Mézenge, F ;
Hannequin, D ;
Dupuy, B ;
Baron, JC ;
Desgranges, B .
NEUROCASE, 2005, 11 (01) :14-25