DIFFERENTIAL SUB ORDINATIONS AND α-CONVEX FUNCTIONS

被引:12
作者
Dziok, Jacek [1 ]
Raina, Ravinder Krishna [2 ]
Sokol, Janusz [3 ]
机构
[1] Univ Rzeszow, Inst Math, Dept Math, PL-35310 Rzeszow, Poland
[2] MP Univ Agr & Technol, Udaipur, India
[3] Rzeszow Univ Technol, Dept Math, PL-35959 Rzeszow, Poland
关键词
Univalent functions; starlike functions; subordination; Fibonacci numbers; tri-sectrix; of Maclaurin; conchoid of de Sluze; STARLIKE FUNCTIONS; FIBONACCI NUMBERS;
D O I
10.1016/S0252-9602(13)60024-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents some new results on the class SLM alpha of functions that are analytic in the open unit disc U = {z :vertical bar z vertical bar< 1} satisfying the conditions that [GRAPHICS] for all z epsilon U, where alpha is a real number and [GRAPHICS] The number r = (1 - root 5)/2 is such that r(2) = 1 + r. The class SLM alpha introduced by J. Dziok, R.K. Raina, and J. Sokol [3, Appl. Math. Comput. 218 (2011), 996-1002] is closely related to the classes of starlike and convex functions. The article deals with several ideas and techniques used in geometric function theory and differential subordinations theory.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 24 条
[1]   ON SOME CLASSES OF BOUNDED UNIVALENT FUNCTIONS [J].
BRANNAN, DA ;
KIRWAN, WE .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 1 (3P3) :431-&
[2]   On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers [J].
Dziok, Jacek ;
Raina, Ravinder Krishna ;
Sokol, Janusz .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (5-6) :1203-1211
[3]   Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers [J].
Dziok, Jacek ;
Raina, Ravinder Krishna ;
Sokol, Janusz .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) :2605-2613
[4]   On α-convex functions related to shell-like functions connected with Fibonacci numbers [J].
Dziok, Jacek ;
Raina, Ravinder Krishna ;
Sokol, Janusz .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :996-1002
[5]  
Goodman A.W., 1991, Ann. Pol. Math., V56, P87, DOI DOI 10.4064/ap-56-1-87-92
[6]  
Goodman A. W., 1983, Univalent Functions
[7]  
Janowski W., 1971, Ann. Polonici Math., V23, P159, DOI DOI 10.4064/AP-23-2-159-177
[8]  
Janowski W., 1973, Ann. Polon. Math, V28, P297, DOI [10.4064/ap-28-3-297-326, DOI 10.4064/AP-28-3-297-326]
[9]  
Jurasiska R., 2001, ANN POLON MATH, V80, P163
[10]   Conic regions and k-uniform convexity [J].
Kanas, S ;
Wisniowska, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :327-336