The NAD(P)H:Flavin oxidoreductase from Escherichia coli -: Evidence for a new mode of binding for reduced pyridine nucleotides

被引:37
作者
Nivière, V
Fieschi, F
Décout, JL
Fontecave, M
机构
[1] Univ J Fourier, CNRS, CEA,Ctr Redox Biol, DBMS,Lab Chim & Biochim, F-38054 Grenoble 9, France
[2] Univ J Fourier, CNRS, CEA, Inst Biol Struct, F-38027 Grenoble, France
关键词
D O I
10.1074/jbc.274.26.18252
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NAD(P)H:flavin oxidoreductase from Escherichia coli, named Fre, is a monomer of 26.2 kDa that catalyzes the reduction of free flavins using NADPH or NADH as electron donor. The enzyme does not contain any prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin in a ternary complex prior to oxidoreduction. The specificity of the flavin reductase for the pyridine nucleotide was studied by steady-state kinetics using a variety of NADP analogs. Both the nicotinamide ring and the adenosine part of the substrate molecule have been found to be important for binding to the polypeptide chain. However, in the case of NADPH, the 2'-phosphate group destabilized almost completely the interaction with the adenosine moiety. Moreover, NADPH and NMNH are very good substrates for the flavin reductase, and we have shown that both these molecules bind to the enzyme almost exclusively by the nicotinamide ring. This provides evidence that the flavin reductase exhibits a unique mode for recognition of the reduced pyridine nucleotide. In addition, we have shown that the flavin reductase selectively transfers the pro-R hydrogen from the C-4 position of the nicotinamide ring and is therefore classified as an A-side-specific enzyme.
引用
收藏
页码:18252 / 18260
页数:9
相关论文
共 39 条
[1]   Electrostatic effects in the kinetics of coenzyme binding to isozymes of alcohol dehydrogenase from horse liver [J].
Adolph, HW ;
Kiefer, M ;
CedergrenZeppezauer, E .
BIOCHEMISTRY, 1997, 36 (29) :8743-8754
[2]   INVOLVEMENT OF SERINE-96 IN THE CATALYTIC MECHANISM OF FERREDOXIN-NADP(+) REDUCTASE - STRUCTURE-FUNCTION RELATIONSHIP AS STUDIED BY SITE-DIRECTED MUTAGENESIS AND X-RAY CRYSTALLOGRAPHY [J].
ALIVERTI, A ;
BRUNS, CM ;
PANDINI, VE ;
KARPLUS, PA ;
VANONI, MA ;
CURTI, B ;
ZANETTI, G .
BIOCHEMISTRY, 1995, 34 (26) :8371-8379
[3]  
BATIE CJ, 1984, J BIOL CHEM, V259, P1976
[4]  
BATIE CJ, 1986, J BIOL CHEM, V261, P1214
[5]   CLONING AND ANALYSIS OF STRUCTURAL GENES FROM STREPTOMYCES-PRISTINAESPIRALIS ENCODING ENZYMES INVOLVED IN THE CONVERSION OF PRISTINAMYCIN-IIB TO PRISTINAMYCIN-IIA (PIIA) - PIIA SYNTHASE AND NADH-RIBOFLAVIN 5'-PHOSPHATE OXIDOREDUCTASE [J].
BLANC, V ;
LAGNEAUX, D ;
DIDIER, P ;
GIL, P ;
LACROIX, P ;
CROUZET, J .
JOURNAL OF BACTERIOLOGY, 1995, 177 (18) :5206-5214
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   REFINED CRYSTAL-STRUCTURE OF SPINACH FERREDOXIN REDUCTASE AT 1.7 ANGSTROM RESOLUTION - OXIDIZED, REDUCED AND 2'-PHOSPHO-5'-AMP BOUND-STATES [J].
BRUNS, CM ;
KARPLUS, PA .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (01) :125-145
[8]   PHTHALATE DIOXYGENASE REDUCTASE - A MODULAR STRUCTURE FOR ELECTRON-TRANSFER FROM PYRIDINE-NUCLEOTIDES TO [2FE-2S] [J].
CORRELL, CC ;
BATIE, CJ ;
BALLOU, DP ;
LUDWIG, ML .
SCIENCE, 1992, 258 (5088) :1604-1610
[9]  
COVES J, 1993, J BIOL CHEM, V268, P18604
[10]   REDUCTION AND MOBILIZATION OF IRON BY A NAD(P)H - FLAVIN OXIDOREDUCTASE FROM ESCHERICHIA-COLI [J].
COVES, J ;
FONTECAVE, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 211 (03) :635-641