Nonlinear elliptic problem involving non-local boundary conditions and variable exponent

被引:2
作者
Ouaro, Stanislas [1 ]
Soma, Safimba [1 ]
机构
[1] Univ Ouaga Pr Joseph KI ZERBO, Dept Math, Lab Math & Informat LAMI, Unite Format & Rech Sci Exactes & Appl, Ouagadougou, Burkina Faso
关键词
Non-local boundary conditions; maximal monotone graph; Leray-Lions operator; variable exponent; weak solution; MULTIPLICITY; EQUATIONS;
D O I
10.1080/17476933.2017.1318854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear elliptic problem with non-local boundary conditions and variable exponent. We prove an existence and uniqueness result of weak solution to this problem with general maximal monotone graphs.
引用
收藏
页码:437 / 461
页数:25
相关论文
共 18 条
[1]   OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS [J].
Andreu, Fuensanta ;
Igbida, Noureddine ;
Mazon, Jose M. ;
Toledo, Julian .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (11) :1869-1893
[2]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[3]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[4]  
[Anonymous], 2002, THESIS U FRIEBURG GE
[5]  
Antontsev S.N., 2006, Ann. Univ. Ferrara. Sez., VVII, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
[6]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[7]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[8]   Modelling of single-phase flow for horizontal wells in a stratified medium [J].
Ding, Y ;
Ha-Duong, T ;
Giroire, J ;
Moumas, V .
COMPUTERS & FLUIDS, 2004, 33 (5-6) :715-727
[9]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[10]   A non-linear and non-local boundary condition for a diffusion equation in petroleum engineering [J].
Giroire, J ;
Ha-Duong, T ;
Moumas, V .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (13) :1527-1552