Fusion of wireless and non-contact technologies for the dynamic testing of a historic RC bridge

被引:26
作者
Ferrari, Rosalba [1 ]
Pioldi, Fabio [1 ]
Rizzi, Egidio [1 ]
Gentile, Carmelo [2 ]
Chatzi, Eleni N. [3 ]
Serantoni, Eugenio [4 ]
Wieser, Andreas [4 ]
机构
[1] Univ Bergamo, Dipartimento Ingn & Sci Applicate Dalmine, Viale G Marconi 5, I-24044 Dalmine, BG, Italy
[2] Politecn Milan, Dipartimento Architettura Ingn Costruz & Ambiente, Via G Ponzio 31, I-20133 Milan, Italy
[3] ETH, Inst Struct Engn, Dept Civil Environm & Geomat Engn, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland
[4] ETH, Inst Geodesy & Photogrammetry, Dept Civil Environm & Geomat Engn, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland
关键词
Structural Health Monitoring; wireless sensors; non-contact sensors; reinforced concrete bridge; multi-rate Kalman filter; heterogeneous data fusion; structural identification; MODAL IDENTIFICATION; SYSTEM; DISPLACEMENTS; FREQUENCIES;
D O I
10.1088/0957-0233/27/12/124014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a dynamic testing and corresponding signal processing methodology is presented for condition assessment of bridge structures, via use of a diverse and potentially dense grid of low-cost and easily deployable monitoring technologies. In particular, wireless and non-contact sensors are simultaneously deployed on a historic reinforced concrete bridge in order to record acceleration and dynamic displacement response, under operational loading conditions. An innovative monitoring approach is proposed on both the hardware (sensors) and software (algorithmic) front, in which an effective data fusion procedure is adopted for fusing these alternative technologies for vibration-based monitoring in terms of both acceleration and displacement information. The demonstrated efficacy of the fusion procedure on the case-study of an actual operating system, the historic Brivio bridge, reveals the potential of this approach within the context of structural monitoring, where acquisition of heterogeneous information certainly proves advantageous.
引用
收藏
页数:15
相关论文
共 51 条
[11]   Operational modal testing and FE model tuning of a cable-stayed bridge [J].
Benedettini, Francesco ;
Gentile, Carmelo .
ENGINEERING STRUCTURES, 2011, 33 (06) :2063-2073
[12]   Modal identification of output-only systems using frequency domain decomposition [J].
Brincker, R ;
Zhang, LM ;
Andersen, P .
SMART MATERIALS & STRUCTURES, 2001, 10 (03) :441-445
[13]  
Bürki B, 2010, INT C INDOOR POSIT
[14]   A VISION SYSTEM FOR VIBRATION MONITORING OF CIVIL ENGINEERING STRUCTURES [J].
Caetano, E. ;
Silva, S. ;
Bateira, J. .
EXPERIMENTAL TECHNIQUES, 2011, 35 (04) :74-82
[15]   Vibration based condition monitoring: A review [J].
Carden, EP ;
Fanning, P .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2004, 3 (04) :355-377
[16]   Engineering vibration monitoring by GPS: long duration records [J].
Casciati, F. ;
Fuggini, C. .
EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2009, 8 (03) :459-467
[17]  
Casciati F, 2008, STRUCT HLTH MONIT, P219
[18]   Development of a wireless sensor network system for suspension bridge health monitoring [J].
Chae, M. J. ;
Yoo, H. S. ;
Kim, J. Y. ;
Cho, M. Y. .
AUTOMATION IN CONSTRUCTION, 2012, 21 :237-252
[19]   Three-Dimensional Structural Translation and Rotation Measurement Using Monocular Videogrammetry [J].
Chang, C. C. ;
Xiao, X. H. .
JOURNAL OF ENGINEERING MECHANICS, 2010, 136 (07) :840-848
[20]   Measuring sub-mm structural displacements using QDaedalus: a digital clip-on measuring system developed for total stations [J].
Charalampous E. ;
Psimoulis P. ;
Guillaume S. ;
Spiridonakos M. ;
Klis R. ;
Bürki B. ;
Rothacher M. ;
Chatzi E. ;
Luchsinger R. ;
Feltrin G. .
Applied Geomatics, 2015, 7 (2) :91-101