The Scaling Limit of the Critical One-Dimensional Random Schrodinger Operator

被引:33
作者
Kritchevski, Eugene [1 ]
Valko, Benedek [2 ]
Virag, Balint [3 ,4 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[4] Univ Toronto, Dept Stat, Toronto, ON M5S 2E4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
LARGE DISORDER; ANDERSON; SPECTRUM; LOCALIZATION; DIFFUSION; ABSENCE; MODEL;
D O I
10.1007/s00220-012-1537-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider two models of one-dimensional discrete random Schrodinger operators (H-n psi)(l) = psi(l-1) + psi(l+1) + upsilon(l)psi(l), in the cases and . Here omega (k) are independent random variables with mean 0 and variance 1. We show that the eigenvectors are delocalized and the transfer matrix evolution has a scaling limit given by a stochastic differential equation. In both cases, eigenvalues near a fixed bulk energy E have a point process limit. We give bounds on the eigenvalue repulsion, large gap probability, identify the limiting intensity and provide a central limit theorem. In the second model, the limiting processes are the same as the point processes obtained as the bulk scaling limits of the beta-ensembles of random matrix theory. In the first model, the eigenvalue repulsion is much stronger.
引用
收藏
页码:775 / 806
页数:32
相关论文
共 26 条
[1]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
[Anonymous], 2007, CLASSICS MATH
[4]   From the Anderson Model on a Strip to the DMPK Equation and Random Matrix Theory [J].
Bachmann, S. ;
De Roeck, W. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (04) :541-564
[5]   Correlation estimates in the anderson model [J].
Bellissard, Jean V. ;
Hislop, Peter D. ;
Stolz, Gueter .
JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (04) :649-662
[6]   ANDERSON LOCALIZATION FOR BERNOULLI AND OTHER SINGULAR POTENTIALS [J].
CARMONA, R ;
KLEIN, A ;
MARTINELLI, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :41-66
[7]   Generalized Eigenvalue-Counting Estimates for the Anderson Model [J].
Combes, Jean-Michel ;
Germinet, Francois ;
Klein, Abel .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (02) :201-216
[8]  
DELYON F, 1985, ANN I H POINCARE-PHY, V42, P283
[9]  
Ethier SN., 2009, Markov processes: characterization and convergence, DOI [10.1002/9780470316658, DOI 10.1002/9780470316658]
[10]   ABSENCE OF DIFFUSION IN THE ANDERSON TIGHT-BINDING MODEL FOR LARGE DISORDER OR LOW-ENERGY [J].
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :151-184