GIT1 Phosphorylation on Serine 46 by PKD3 Regulates Paxillin Trafficking and Cellular Protrusive Activity

被引:23
作者
Huck, Bettina [1 ]
Kemkemer, Ralf [2 ]
Franz-Wachtel, Mirita [3 ]
Macek, Boris [3 ]
Hausser, Angelika [1 ]
Olayioye, Monilola A. [1 ]
机构
[1] Univ Stuttgart, Inst Cell Biol & Immunol, D-70569 Stuttgart, Germany
[2] Max Planck Inst Intelligent Syst, Dept New Mat & Biosyst, Stuttgart, Germany
[3] Univ Tubingen, Interfac Inst Cell Biol, Proteome Ctr Tuebingen, D-72076 Tubingen, Germany
关键词
PROTEIN-KINASE-D; P21-ACTIVATED KINASE; MASS-SPECTROMETRY; SIGNALING COMPLEX; FOCAL ADHESIONS; LEADING-EDGE; ACTIN; MIGRATION; ACTIVATION; TRANSPORT;
D O I
10.1074/jbc.M112.374652
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.
引用
收藏
页码:34604 / 34613
页数:10
相关论文
共 39 条
[1]   ADP-ribosylation factor 6 and a functional PIX/p95-APP1 complex are required for Rac1B-mediated neurite outgrowth [J].
Albertinazzi, C ;
Za, L ;
Paris, S ;
de Curtis, I .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (04) :1295-1307
[2]   Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models [J].
Borchert, Nadine ;
Dieterich, Christoph ;
Krug, Karsten ;
Schuetz, Wolfgang ;
Jung, Stephan ;
Nordheim, Alfred ;
Sommer, Ralf J. ;
Macek, Boris .
GENOME RESEARCH, 2010, 20 (06) :837-846
[3]   Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway [J].
Brown, MC ;
West, KA ;
Turner, CE .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (05) :1550-1565
[4]   Paxillin: Adapting to change [J].
Brown, MC ;
Turner, CE .
PHYSIOLOGICAL REVIEWS, 2004, 84 (04) :1315-1339
[5]   Protein kinase C-independent effects of protein kinase D3 in glucose transport in L6 myotubes [J].
Chen, J ;
Lu, GW ;
Wang, QJ .
MOLECULAR PHARMACOLOGY, 2005, 67 (01) :152-162
[6]   Protein kinase D3 (PKD3) contributes to prostate cancer cell growth and survival through a PKCε/PKD3 pathway downstream of Akt and ERK 1/2 [J].
Chen, Jun ;
Deng, Fan ;
Singh, Shivendra V. ;
Wang, Qiming J. .
CANCER RESEARCH, 2008, 68 (10) :3844-3853
[7]   A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics [J].
Cox, Juergen ;
Matic, Ivan ;
Hilger, Maximiliane ;
Nagaraj, Nagarjuna ;
Selbach, Matthias ;
Olsen, Jesper V. ;
Mann, Matthias .
NATURE PROTOCOLS, 2009, 4 (05) :698-705
[8]   Paxillin comes of age [J].
Deakin, Nicholas O. ;
Turner, Christopher E. .
JOURNAL OF CELL SCIENCE, 2008, 121 (15) :2435-2444
[9]   p95-APP1 links membrane transport to Rac-mediated reorganization of actin [J].
Di Cesare, A ;
Paris, S ;
Albertinazzi, C ;
Dariozzi, S ;
Andersen, J ;
Mann, M ;
Longhi, R ;
de Curtis, I .
NATURE CELL BIOLOGY, 2000, 2 (08) :521-530
[10]   A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D [J].
Döppler, H ;
Storz, P ;
Li, J ;
Comb, MJ ;
Toker, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (15) :15013-15019