Ensemble-based Multi-objective Clustering Algorithms for Gene Expression Data Sets

被引:0
作者
Li, Jianxia [1 ]
Liu, Ruochen [1 ]
Zhang, Mingyang [1 ]
Li, Yangyang [1 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Shaanxi, Peoples R China
来源
2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2017年
基金
中国国家自然科学基金;
关键词
multi-objective clustering ensemble algorithms; gene expression data; MOLECULAR CLASSIFICATION; PREDICTION; CANCER; DISCOVERY; PATTERNS; SUBTYPES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, two multi-objective clustering ensemble algorithms are proposed named MOCLED and MOCNCD. MOCLED is different from MOCLE on three points. First, different clustering algorithms are used to produce some new individuals in evolutionary process. Second, a new screening mechanism is added. In each generation, the worst individual is replaced by the best individual. Third, a new objective function is added to ensure a diverse population. MOCNCD is the same as MOCLED except the crossover operator. We replace it with a new proposed cluster ensemble algorithm, IDICLENS. Experimental results reveal the advantages of our method on finding good partitions.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 35 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]  
[Anonymous], IEEE C EV COMP
[3]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[4]   Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas [J].
Bredel, M ;
Bredel, C ;
Juric, D ;
Harsh, GR ;
Vogel, H ;
Recht, LD ;
Sikic, BI .
CANCER RESEARCH, 2005, 65 (19) :8679-8689
[5]   Clustering Ensemble: A Multiobjective Genetic Algorithm based Approach [J].
Chatterjee, Sujoy ;
Mukhopadhyay, Anirban .
FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE: MODELING TECHNIQUES AND APPLICATIONS (CIMTA) 2013, 2013, 10 :443-449
[6]   Gene expression patterns in human liver cancers [J].
Chen, X ;
Cheung, ST ;
So, S ;
Fan, ST ;
Barry, C ;
Higgins, J ;
Lai, KM ;
Ji, JF ;
Dudoit, S ;
Ng, IOL ;
van de Rijn, M ;
Botstein, D ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (06) :1929-1939
[7]   Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative [J].
Chowdary, D ;
Lathrop, J ;
Skelton, J ;
Curtin, K ;
Briggs, T ;
Zhang, Y ;
Yu, J ;
Wang, YX ;
Mazumder, A .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2006, 8 (01) :31-39
[8]   Comparative analysis of clustering methods for gene expression time course data [J].
Costa, IG ;
de Carvalho, FDT ;
de Souto, MCP .
GENETICS AND MOLECULAR BIOLOGY, 2004, 27 (04) :623-631
[9]   Comparisons and validation of statistical clustering techniques for microarray gene expression data [J].
Datta, S ;
Datta, S .
BIOINFORMATICS, 2003, 19 (04) :459-466
[10]   Clustering cancer gene expression data: a comparative study [J].
de Souto, Marcilio C. P. ;
Costa, Ivan G. ;
de Araujo, Daniel S. A. ;
Ludermir, Teresa B. ;
Schliep, Alexander .
BMC BIOINFORMATICS, 2008, 9 (1)