Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods

被引:93
作者
Nosratabadi, Saeed [1 ]
Mosavi, Amirhosein [2 ,3 ]
Puhong Duan [4 ]
Ghamisi, Pedram [5 ]
Filip, Ferdinand [6 ]
Band, Shahab S. [7 ,8 ]
Reuter, Uwe [9 ]
Gama, Joao [10 ]
Gandomi, Amir H. [11 ]
机构
[1] Szent Istvan Univ, Doctoral Sch Management & Business Adm, H-2100 Godollo, Hungary
[2] Ton Duc Thang Univ, Environm Qual Atmospher Sci & Climate Change Res, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh, Vietnam
[4] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[5] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zentrum Dresden Rossendorf, D-09599 Freiberg, Germany
[6] J Selye Univ, Dept Math, Komarno 94501, Slovakia
[7] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[8] Natl Yunlin Univ Sci & Technol, Coll Future, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
[9] Tech Univ Dresden, Fac Civil Engn, D-01069 Dresden, Germany
[10] INESC TEC, Fac Lab Artificial Intelligence & Decis Support L, Campus FEUP,Rua Roberto Frias, P-4200465 Porto, Portugal
[11] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
关键词
data science; deep learning; economic model; ensemble; economics; cryptocurrency; machine learning; deep reinforcement learning; big data; bitcoin; time series; network science; prediction; survey; artificial intelligence; literature review; PREDICTION; HYBRID; MODEL; CLASSIFICATION; PERFORMANCE;
D O I
10.3390/math8101799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides a comprehensive state-of-the-art investigation of the recent advances in data science in emerging economic applications. The analysis is performed on the novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a broad and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, is used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which outperform other learning algorithms. It is further expected that the trends will converge toward the evolution of sophisticated hybrid deep learning models.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 97 条
[21]  
Durairaj M., 2019, INT J EMERG TECHNOL, V10, P324
[22]   AN EFFICIENT HYBRID MACHINE LEARNING METHOD FOR TIME SERIES STOCK MARKET FORECASTING [J].
Ebadati, O. M. E. ;
Mortazavi, M. T. .
NEURAL NETWORK WORLD, 2018, 28 (01) :41-55
[23]   Prediction of Stock Market Using an Ensemble Learning-based Intelligent Model [J].
Faghihi-Nezhad, Mohammad-Taghi ;
Minaei-Bidgoli, Behrouz .
INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2018, 17 (03) :479-496
[24]   Research on Quantitative Investment Strategies Based on Deep Learning [J].
Fang, Yujie ;
Chen, Juan ;
Xue, Zhengxuan .
ALGORITHMS, 2019, 12 (02)
[25]   Improving financial bankruptcy prediction in a highly imbalanced class distribution using oversampling and ensemble learning: a case from the Spanish market [J].
Faris, Hossam ;
Abukhurma, Ruba ;
Almanaseer, Waref ;
Saadeh, Mohammed ;
Mora, Antonio M. ;
Castillo, Pedro A. ;
Aljarah, Ibrahim .
PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (01) :31-53
[26]   Deep learning with long short-term memory networks for financial market predictions [J].
Fischer, Thomas ;
Krauss, Christopher .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 270 (02) :654-669
[27]   DEEP LEARNING FOR STOCK MARKET TRADING: A SUPERIOR TRADING STRATEGY? [J].
Fister, D. ;
Mun, J. C. ;
Jagric, V ;
Jagric, T. .
NEURAL NETWORK WORLD, 2019, 29 (03) :151-171
[28]   Deep learning-based image recognition for autonomous driving [J].
Fujiyoshi, Hironobu ;
Hirakawa, Tsubasa ;
Yamashita, Takayoshi .
IATSS RESEARCH, 2019, 43 (04) :244-252
[29]   Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network [J].
Ghamisi, Pedram ;
Hoefle, Bernhard ;
Zhu, Xiao Xiang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (06) :3011-3024
[30]  
Go Y.H., 2019, INT J RECENT TECHNOL, V8, P31, DOI [10.35940/ijrte.B1007.0782S619, DOI 10.35940/IJRTE.B1007.0782S619]