Non-Hermiticity in a kicked model: Decoherence and the semiclassical limit

被引:0
作者
Satija, II [1 ]
Pattanayak, AK
机构
[1] George Mason Univ, Dept Phys, Fairfax, VA 22030 USA
[2] Carleton Coll, Dept Phys & Astron, Northfield, MN 55057 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 04期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effects of non-Hermitian perturbations on a quantum kicked model exhibiting a localization transition. Using an exact renormalization scheme, we show that the critical line separating the extended and localized phases approaches its semiclassical limit as the imaginary part of the kicking parameter is steadily increased. Further, the metastability of the quantum states appears to be directly correlated with the deviation between the semiclassical and quantum results. This direct evidence of quantum-classical correspondence suggests that decoherence may be usefully modeled by non-Hermitian perturbations.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Quantum delta-kicked rotor: Experimental observation of decoherence [J].
Ammann, H ;
Gray, R ;
Shvarchuck, I ;
Christensen, N .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4111-4115
[2]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[3]   Continuous fuzzy measurement of energy for a two-level system [J].
Audretsch, J ;
Mensky, M .
PHYSICAL REVIEW A, 1997, 56 (01) :44-54
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   Theory of directed localization in one dimension [J].
Brouwer, PW ;
Silvestrov, PG ;
Beenakker, CWJ .
PHYSICAL REVIEW B, 1997, 56 (08) :R4333-R4335
[6]  
Casati G., 1995, QUANTUM CHAOS ORDER
[7]   Issues in general quantum transport with complex potentials [J].
Ferry, DK ;
Barker, JR .
APPLIED PHYSICS LETTERS, 1999, 74 (04) :582-584
[8]   Breakup of a dimer:: a new approach to localization transition [J].
Gómez, I ;
Satija, II .
PHYSICS LETTERS A, 2000, 268 (1-2) :128-133
[9]   QUANTUM DYNAMICS OF A NONINTEGRABLE SYSTEM [J].
GREMPEL, DR ;
PRANGE, RE ;
FISHMAN, S .
PHYSICAL REVIEW A, 1984, 29 (04) :1639-1647
[10]   Decoherence, chaos, and the correspondence principle [J].
Habib, S ;
Shizume, K ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1998, 80 (20) :4361-4365