Integrable systems and group actions

被引:12
作者
Miranda, Eva [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2014年 / 12卷 / 02期
关键词
Integrable system; Momentum map; Poisson manifold; Contact manifold; Symplectic manifold; Group action; HAMILTONIAN TORUS ACTIONS; NORMAL FORMS; POISSON STRUCTURES; SYMPLECTIC TOPOLOGY; GEODESIC-FLOWS; MANIFOLDS; SINGULARITIES; CLASSIFICATION; QUANTIZATION; FOLIATIONS;
D O I
10.2478/s11533-013-0333-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.
引用
收藏
页码:240 / 270
页数:31
相关论文
共 70 条
[1]   Projective dynamics and classical gravitation [J].
Albouy, A. .
REGULAR & CHAOTIC DYNAMICS, 2008, 13 (06) :525-542
[2]  
[Anonymous], 2001, J. Symplectic Geom.
[3]  
[Anonymous], 1978, GRAD TEXTS MATH
[4]  
[Anonymous], 2003, THESIS U BARCELONA
[5]  
[Anonymous], 1936, J MATH PURE APPL
[6]  
Banyaga A., 1993, SEMINAIRE GASTON DAR, P1
[7]   Noncommutative integrability, moment map and geodesic flows [J].
Bolsinov, AV ;
Jovanovic, B .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (04) :305-322
[8]  
CHAPERON M, 1983, ASTERISQUE, P259
[9]  
Chaperon M, 2013, ACTA MATH VIETNAM, V38, P3, DOI 10.1007/s40306-012-0003-y
[10]   COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS [J].
CHEVALLEY, C ;
EILENBERG, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (JAN) :85-124