An Algebraic Recursive Method for Parameter Identification of a Servo Model

被引:28
|
作者
Garrido, Ruben [1 ]
Concha, Antonio [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Automat Control, Mexico City 07360, DF, Mexico
关键词
Algebraic parametrization; least squares; operational calculus; parameter estimation; servomechanism; CONTINUOUS-TIME SYSTEMS; FRICTION IDENTIFICATION; COMPENSATION; MOTORS; RELAY;
D O I
10.1109/TMECH.2012.2208197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study proposes a two-step identification method for estimating the four parameters of a nonlinear model of a position-controlled servomechanism. In the first step, the proposed approach, called the algebraic recursive identification method (ARIM), uses a parametrization derived from the operational calculus currently employed in algebraic identification methods (AIM) recently proposed in the literature. The procedure for obtaining this parametrization eliminates the effect of constant disturbances affecting the servomechanism and filters out the high-frequency measurement noise. A recursive least squares algorithm uses the parametrization for estimating the linear part of the servomechanism model, and allows eliminating the singularity problems found in the AIM. The second step uses the parameters obtained in the first step for computing the Coulomb friction coefficient and the constant disturbance acting on the servomechanism. Experimental results on a laboratory prototype allow comparing the results obtained using the AIM and the ARIM.
引用
收藏
页码:1572 / 1580
页数:9
相关论文
共 50 条
  • [21] Algebraic Parameter Identification for Induction Motors
    Cortes-Romero, John
    Garcia-Rodriguez, Carlos
    Luviano-Juarez, Alberto
    Sira-Ramirez, Hebertt
    IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011, : 1734 - 1740
  • [23] A recursive Taylor method for algebraic curves and surfaces
    Shou, HH
    Martin, R
    Wang, GJ
    Bowyer, A
    Voiculescu, I
    COMPUTATIONAL METHODS FOR ALGEBRAIC SPLINE SURFACES, 2005, : 135 - 154
  • [24] A multilevel model correction method for parameter identification
    Li, Jingzhi
    Zou, Jun
    INVERSE PROBLEMS, 2007, 23 (05) : 1759 - 1786
  • [25] New Parameter Identification Method for Supercapacitor Model
    Marin-Coca, Sergio
    Ostadrahimi, Amir
    Bifaretti, Stefano
    Roibas-Millan, Elena
    Pindado, Santiago
    IEEE ACCESS, 2023, 11 : 21771 - 21782
  • [26] MEMS gyro random drift model parameter identification based on Two-stage recursive least squares method
    Liu, Zhaohua
    Chen, Jiabin
    Mao, Yuliang
    Song, Chunlei
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 1044 - 1047
  • [27] A differential model for magnetic hysteresis: Recursive algebraic
    De Almeida, L.A.L.
    Deep, Gurdip S.
    Lima, Antonio Marcus N.
    Neff, Helmut
    Controle y Automacao, 2003, 14 (01): : 58 - 68
  • [28] Parameter subset identification by recursive least squares
    Pizarro, O
    Sbarbaro, D
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 3590 - 3591
  • [29] Thermal Parameter Estimation Using Recursive Identification
    Skibinski, Gary L.
    Sethares, William A.
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 1991, 6 (02) : 228 - 239
  • [30] Recursive Identification of the ARARX Model Based on the Variational Bayes Method
    Dokoupil, Jakub
    Vaclavek, Pavel
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4215 - 4222