A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana

被引:39
|
作者
Wang, Jun-Ying [1 ]
Wang, Jun-Ping [2 ]
He-Yuan [1 ]
机构
[1] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
[2] Tianjin Univ Sci & Technol, Tianjin 300457, Peoples R China
关键词
Populus euphratica; NAC domain; Stress tolerance; Na+/K+ ratios; NO-APICAL-MERISTEM; MOLECULAR CHARACTERIZATION; TRANSCRIPTION FACTORS; FUNCTIONAL-ANALYSIS; K+/NA+ HOMEOSTASIS; GENE; DROUGHT; EXPRESSION; TRANSPORT; SOS1;
D O I
10.1016/j.gene.2013.03.068
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
NAC transcription factors are plant-specific and play an important role in responses to biotic and abiotic stresses. Populus euphratica is a salt-tolerant tree species growing in semi-arid saline areas. A stress responsive gene was successfully isolated from this species and named PeNAC1. The isolated cDNA encoded a protein containing a conserved NAC domain that belonged to the ATAF subgroup of the NAC protein family. The protein was localized to the nucleus and its C-terminus had transcriptional activation activity. Northern hybridization showed that its expression was strongly induced by drought and salt stress, but only slightly induced by ABA treatment in P. euphratica. Transgenic Arabidopsis overexpressing PeNAC1 showed enhanced tolerance to salt stress, with lower Na+/K+ ratios in the roots and leaves, and significantly inhibited expression levels of AtHKT1. Our results suggest that PeNAC1 plays a role in the plant response to salt stress by regulating Na+/K+ homeostasis. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 50 条
  • [41] SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio
    Yue, Yuesen
    Zhang, Mingcai
    Zhang, Jiachang
    Duan, Liusheng
    Li, Zhaohu
    JOURNAL OF PLANT PHYSIOLOGY, 2012, 169 (03) : 255 - 261
  • [42] Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana
    Li, Ningning
    Wang, Xue
    Ma, Binjie
    Du, Chao
    Zheng, Linlin
    Wang, Yingchun
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 218 : 109 - 120
  • [43] Na+/H+ and K+/H+ antiporters AtNHX1 and AtNHX3 from Arabidopsis improve salt and drought tolerance in transgenic poplar
    Yang, L.
    Liu, H.
    Fu, S. M.
    Ge, H. M.
    Tang, R. J.
    Yang, Y.
    Wang, H. H.
    Zhang, H. X.
    BIOLOGIA PLANTARUM, 2017, 61 (04) : 641 - 650
  • [44] Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses
    Reddy, Inja Naga Bheema Lingeswara
    Kim, Sung-Mi
    Kim, Beom-Ki
    Yoon, In-Sun
    Kwon, Taek-Ryoun
    RICE SCIENCE, 2017, 24 (06) : 360 - 364
  • [45] The Endophytic Strain ZS-3 Enhances Salt Tolerance in Arabidopsis thaliana by Regulating Photosynthesis, Osmotic Stress, and Ion Homeostasis and Inducing Systemic Tolerance
    Shi, Li-Na
    Lu, Lan-Xiang
    Ye, Jian-Ren
    Shi, Hui-Min
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [46] SOS1 is a key systemic regulator of salt secretion and K+/Na+ homeostasis in the recretohalophyte Karelinia caspia
    Guo, Qiang
    Meng, Lin
    Han, Jiwan
    Mao, Peichun
    Tian, Xiaoxia
    Zheng, Mingli
    Mur, Luis A. J.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 177
  • [47] Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance
    Wang, Ning
    Qi, Haikun
    Qiao, Wenqing
    Shi, Jianbin
    Xu, Qinghua
    Zhou, Hong
    Yan, Gentu
    Huang, Qun
    ACTA PHYSIOLOGIAE PLANTARUM, 2017, 39 (03)
  • [48] Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars
    Wang, Ning
    Qiao, Wenqing
    Liu, Xiaohong
    Shi, Jianbin
    Xu, Qinghua
    Zhou, Hong
    Yan, Gentu
    Huang, Qun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 119 : 121 - 131
  • [49] Regulation of Na+/H+ exchangers, Na+/K+ transporters, and lignin biosynthesis genes, along with lignin accumulation, sodium extrusion, and antioxidant defense, confers salt tolerance in alfalfa
    Rahman, Md Atikur
    Woo, Jae Hoon
    Lee, Sang-Hoon
    Park, Hyung Soo
    Kabir, Ahmad Humayan
    Raza, Ali
    El Sabagh, Ayman
    Lee, Ki-Won
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [50] GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana
    Chen, Xiugui
    Lu, Xuke
    Shu, Na
    Wang, Delong
    Wang, Shuai
    Wang, Junjuan
    Guo, Lixue
    Guo, Xiaoning
    Fan, Weili
    Lin, Zhongxu
    Ye, Wuwei
    PLOS ONE, 2017, 12 (07):