A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana

被引:39
|
作者
Wang, Jun-Ying [1 ]
Wang, Jun-Ping [2 ]
He-Yuan [1 ]
机构
[1] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
[2] Tianjin Univ Sci & Technol, Tianjin 300457, Peoples R China
关键词
Populus euphratica; NAC domain; Stress tolerance; Na+/K+ ratios; NO-APICAL-MERISTEM; MOLECULAR CHARACTERIZATION; TRANSCRIPTION FACTORS; FUNCTIONAL-ANALYSIS; K+/NA+ HOMEOSTASIS; GENE; DROUGHT; EXPRESSION; TRANSPORT; SOS1;
D O I
10.1016/j.gene.2013.03.068
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
NAC transcription factors are plant-specific and play an important role in responses to biotic and abiotic stresses. Populus euphratica is a salt-tolerant tree species growing in semi-arid saline areas. A stress responsive gene was successfully isolated from this species and named PeNAC1. The isolated cDNA encoded a protein containing a conserved NAC domain that belonged to the ATAF subgroup of the NAC protein family. The protein was localized to the nucleus and its C-terminus had transcriptional activation activity. Northern hybridization showed that its expression was strongly induced by drought and salt stress, but only slightly induced by ABA treatment in P. euphratica. Transgenic Arabidopsis overexpressing PeNAC1 showed enhanced tolerance to salt stress, with lower Na+/K+ ratios in the roots and leaves, and significantly inhibited expression levels of AtHKT1. Our results suggest that PeNAC1 plays a role in the plant response to salt stress by regulating Na+/K+ homeostasis. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 50 条
  • [21] Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa)
    Tian, N.
    Wang, J.
    Xu, Z. Q.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2011, 77 (01) : 160 - 169
  • [22] Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis
    Chen, Yinglong
    Li, Rongkai
    Ge, Jianfei
    Liu, Juge
    Wang, Wenbo
    Xu, Mofan
    Zhang, Rui
    Hussain, Shahid
    Wei, Huanhe
    Dai, Qigen
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 189
  • [23] OsPMS1 Mutation Enhances Salt Tolerance by Suppressing ROS Accumulation, Maintaining Na+/K+ Homeostasis, and Promoting ABA Biosynthesis
    Li, Wang-Qing
    Zheng, Wen-Jie
    Peng, Yan
    Shao, Ye
    Liu, Ci-Tao
    Li, Jin
    Hu, Yuan-Yi
    Zhao, Bing-Ran
    Mao, Bi-Gang
    GENES, 2023, 14 (08)
  • [24] Calcineurin B-like protein 5 (SiCBL5) in Setaria italica enhances salt tolerance by regulating Na+ homeostasis
    Yan, Jingwei
    Yang, Lan
    Liu, Ya
    Zhao, Yingdi
    Han, Tong
    Miao, Xingfen
    Zhang, Aying
    CROP JOURNAL, 2022, 10 (01): : 234 - 242
  • [25] Overexpression of the Sorghum bicolor K+/Na+ Transporter Gene, SbSKC1, Enhances Salt Tolerance in Poplar (Populus tomentosa)
    Yao, Xinzhuan
    Chen, Mingjun
    Zhao, Degang
    Lv, Litang
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 24 (02) : 304 - 310
  • [26] The Potassium Transporter AtKUP12 Enhances Tolerance to Salt Stress through the Maintenance of the K+/Na+ Ratio in Arabidopsis
    Zhang, Hua
    Yang, Zhongmin
    You, Xilong
    Heng, Youqiang
    Wang, Yan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2021, 90 (02) : 389 - 402
  • [27] Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress
    Mostofa, Mohammad G.
    Saegusa, Daisuke
    Fujita, Masayuki
    Lam-Son Phan Tran
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [28] Calcium regulation of the Arabidopsis Na+/K+ transporter HKT1;1 improves seed germination under salt stress
    Chandran, Ancy E. J.
    Finkler, Aliza
    Hait, Tom Aharon
    Kiere, Yvonne
    David, Sivan
    Pasmanik-Chor, Metsada
    Shkolnik, Doron
    PLANT PHYSIOLOGY, 2024, 194 (03) : 1834 - 1852
  • [29] Patellin1 Negatively Modulates Salt Tolerance by Regulating PM Na+/H+ Antiport Activity and Cellular Redox Homeostasis in Arabidopsis
    Zhou, Huapeng
    Wang, Chongwu
    Tan, Tinghong
    Cai, Jingqing
    He, Jiaxian
    Lin, Honghui
    PLANT AND CELL PHYSIOLOGY, 2018, 59 (08) : 1630 - 1642
  • [30] Salt tolerance and regulation of Na+, K+, and proline contents in different wild turfgrasses under salt stress
    Tada, Yuichi
    Kochiya, Ryuto
    Toyoizumi, Masayuki
    Takano, Yuka
    PLANT BIOTECHNOLOGY, 2023, 40 (04) : 301 - 309