ANOMALOUS DIFFUSION FOR MULTI-DIMENSIONAL CRITICAL KINETIC FOKKER-PLANCK EQUATIONS

被引:4
|
作者
Fournier, Nicolas [1 ]
Tardif, Camille [1 ]
机构
[1] Sorbonne Univ, LPSM, Paris, France
来源
ANNALS OF PROBABILITY | 2020年 / 48卷 / 05期
关键词
Kinetic diffusion process; kinetic Fokker-Planck equation; heavy-tailed equilibrium; anomalous diffusion phenomena; Bessel processes; stable processes; local times; central limit theorem; homogenization; LIMIT; APPROXIMATION; DISTRIBUTIONS; FUNCTIONALS; TIME;
D O I
10.1214/20-AOP1426
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a particle moving in d >= 2 dimensions, its velocity being a reversible diffusion process, with identity diffusion coefficient, of which the invariant measure behaves, roughly, like (1 + vertical bar v vertical bar)(-beta) as vertical bar v vertical bar -> infinity, for some constant beta > 0. We prove that for large times, after a suitable rescaling, the position process resembles a Brownian motion if beta >= 4 + d, a stable process if beta is an element of [d, 4 + d) and an integrated multi-dimensional generalization of a Bessel process if beta is an element of (d - 2, d). The critical cases beta = d, beta =1+ d and beta = 4 + d require special rescalings.
引用
收藏
页码:2359 / 2403
页数:45
相关论文
共 50 条
  • [1] One Dimensional Critical Kinetic Fokker-Planck Equations, Bessel and Stable Processes
    Fournier, Nicolas
    Tardif, Camille
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (01) : 143 - 173
  • [2] Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations
    V. Schwämmle
    E. M.F. Curado
    F. D. Nobre
    The European Physical Journal B, 2009, 70 : 107 - 116
  • [3] Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations
    Schwaemmle, V.
    Curado, E. M. F.
    Nobre, F. D.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 70 (01): : 107 - 116
  • [4] On the calculation of stationary solutions of multi-dimensional Fokker-Planck equations by orthogonal functions
    von Wagner, U
    Wedig, WV
    NONLINEAR DYNAMICS, 2000, 21 (03) : 289 - 306
  • [5] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [6] A fractional Fokker-Planck model for anomalous diffusion
    Anderson, Johan
    Kim, Eun-jin
    Moradi, Sara
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [7] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [8] Sobolev embeddings for kinetic Fokker-Planck equations
    Pascucci, Andrea
    Pesce, Antonello
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (07)
  • [9] QCD FOKKER-PLANCK EQUATIONS WITH COLOR DIFFUSION
    SELIKHOV, AV
    GYULASSY, M
    PHYSICAL REVIEW C, 1994, 49 (03): : 1726 - 1729
  • [10] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347