A NEW SHAPE-BASED FRAMEWORK FOR THE LEFT VENTRICLE WALL SEGMENTATION FROM CARDIAC FIRST-PASS PERFUSION MRI

被引:0
|
作者
Khalifa, F. [1 ]
Beache, G. M. [2 ]
Elnakib, A. [1 ]
Sliman, H. [1 ,3 ]
Gimel'farb, G. [4 ]
Welch, K. C. [5 ]
El-Baz, A. [1 ]
机构
[1] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[2] Univ Louisville, Sch Med, Dept Radiol, Louisville, KY 40292 USA
[3] Univ Louisville, Dept Comp Engn & Comp Sci, Louisville, KY 40292 USA
[4] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
[5] Univ Louisville, Dept Elect & Comp Engn, Louisville, KY USA
关键词
Perfusion MRI; Deformable model; Segmentation; Nonrigid registration; REGISTRATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a shape-based approach for the segmentation of the left ventricle (LV) wall on cardiac first-pass magnetic resonance imaging (FP-MRI) using level sets. To reduce the variabilities of the LV wall in FP-MRI, it is first imperative to co-align the time series images to account for the global and local motions of the heart. Therefore, we developed a two-step registration methodology that includes an affine-based registration followed by a local B-splines based alignment to maximize a similarity function that accounts for the first- and second-order normalized mutual information (NMI). Additionally, myocardial signal intensity varies with the agent transit, which makes it difficult to control the level set evolution using image intensities alone. Thus, we constrained the level set evolution using three features: a weighted probabilistic shape prior, the first-order pixel-wise image intensities, and a second-order Markov-Gibbs random field (MGRF) spatial interaction model. We tested our approach on 24 data sets in 8 infarction patients using the Dice similarity coefficient (DSC), comparing our approach to other shape-based segmentation approaches. We also tested the performance of our segmentation approach using the receiver operating characteristics (ROC). Our approach achieved a mean DSC value of 0.910 +/- 0.037 compared to other shape-based methods that achieved 0.862 +/- 0.045 and 0.844 +/- 0.047. Finally, the ROC analysis for our segmentation method showed the best performance, with area under the ROC curve of 0.92, while that for intensity showed the worst performance, with area under the ROC curve of 0.69.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 50 条
  • [1] Accurate Segmentation Framework for the Left Ventricle Wall from Cardiac Cine MRI
    Sliman, H.
    Khalifa, F.
    Elnakib, A.
    Soliman, A.
    Beache, G. M.
    Gimel'farb, G.
    Emam, A.
    Elmaghraby, A.
    El-Baz, A.
    2013 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES, 2013, 1559 : 287 - 296
  • [2] A NEW NONRIGID REGISTRATION FRAMEWORK FOR IMPROVED VISUALIZATION OF TRANSMURAL PERFUSION GRADIENTS ON CARDIAC FIRST-PASS PERFUSION MRI
    Khalifa, Fahmi
    Beache, Garth M.
    Gimel'farb, Georgy
    El-Baz, Ayman
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 828 - 831
  • [3] Integrated quantitative first-pass cardiac perfusion MRI protocol
    Elodie Breton
    Daniel Kim
    Sohae Chung
    Leon Axel
    Journal of Cardiovascular Magnetic Resonance, 13 (Suppl 1)
  • [4] A NEW NONRIGID REGISTRATION APPROACH FOR MOTION CORRECTION OF CARDIAC FIRST-PASS PERFUSION MRI
    Khalifa, F.
    Beache, G. M.
    Firjani, A.
    Welch, K. C.
    Gimel'farb, G.
    El-Baz, A.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1665 - 1668
  • [5] Model-Based Reconstruction for Highly Accelerated First-Pass Perfusion Cardiac MRI
    Correia, Teresa
    Schneider, Torben
    Chiribiri, Amedeo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 514 - 522
  • [6] Quantitative Stress First-Pass Perfusion Cardiac MRI: State of the Art
    Catania, Roberta
    Quinn, Sandra
    Rahsepar, Amir A.
    Trabzonlu, Tugce Agirlar
    Bisen, Jay B.
    Chow, Kelvin
    Lee, Daniel C.
    Avery, Ryan
    Kellman, Peter
    Allen, Bradley D.
    RADIOGRAPHICS, 2025, 45 (03)
  • [7] A SHAPE-BASED FRAMEWORK TO SEGMENTATION OF TONGUE CONTOURS FROM MRI DATA
    Peng, Ting
    Kerrien, Erwan
    Berger, Marie-Odile
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 662 - 665
  • [8] Association of Pulmonary Transit Time and Pulmonary Blood Volume From First-Pass Perfusion Cardiac MRI With Diastolic Dysfunction and Left Ventricle Deformation in Restrictive Cardiomyopathy
    Gao, Yue
    Min, Chen-Yan
    Jiang, Yi-Ning
    Shi, Rui
    Guo, Ying-Kun
    Xu, Hua-Yan
    Yang, Zhi-Gang
    Li, Yuan
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (06) : 2343 - 2355
  • [9] Quantitative pixelwise myocardial perfusion maps from first-pass perfusion MRI
    Weng, A. M.
    Ritter, C. O.
    Beer, M.
    Hahn, D.
    Koestler, H.
    BRITISH JOURNAL OF RADIOLOGY, 2014, 87 (1039):
  • [10] Multislice first-pass cardiac perfusion MRI: Validation in a model of myocardial infarction
    Epstein, FH
    London, JF
    Peters, DC
    Goncalves, LM
    Agyeman, K
    Taylor, J
    Balaban, RS
    Arai, AE
    MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (03) : 482 - 491