Modeling and simulation of high-efficiency GaAs PIN solar cells

被引:18
作者
Imran, Ali [1 ]
Sulaman, Muhammad [2 ,3 ]
Song, Yong [2 ]
Eric, Deborah [2 ]
Zahid, Muhammad Noaman [2 ]
Yousaf, Muhammad [4 ]
Saleem, Muhammad Imran [3 ]
Li, Maoyuan [2 ]
Li, Duo [1 ]
机构
[1] Peking Univ, State Key Lab Artificial Microstruct & Mesoscop, Sch Phys, Beijing 100871, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Precis Optoelect Measurement Inst, Sch Opt & Photon, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Sch Phys, Beijing 100081, Peoples R China
[4] Peking Univ, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar cell; Mobility; Lifetime; Recombination; SURFACE RECOMBINATION VELOCITY; RENEWABLE ENERGY; DIFFUSION LENGTH; LIFETIME; SEMICONDUCTORS; OPTIMIZATION; DIODES; SI;
D O I
10.1007/s10825-020-01583-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A theoretical model for GaAs-based solar cells with PIN structure is proposed herein. The effect of varying key parameters on the conversion efficiency is investigated. The simulations are performed using COMSOL Multiphysics software. The mobilities of electrons and holes are varied in combination with the lifetime (LT). As a result, a maximum efficiency of 10.81% is achieved by setting the electron and hole mobility to 1.5k cm(2) V-1 s(-1)and 0.3k cm(2) V-1 s(-1), respectively. The electron and hole carrier LT are 3 ns and 7 ns, respectively, for the maximum output. The effect of the surface recombination velocity (SRV) is also studied, and a maximum efficiency of 13.75% is achieved for an SRV of 1k ms(-1)for electrons and holes. The results show that higher photovoltaic efficiencies can be achieved by increasing the mobility and carrier LT while decreasing the surface recombination velocities.
引用
收藏
页码:310 / 316
页数:7
相关论文
共 50 条
  • [41] Chemical beam epitaxy for high-efficiency InP solar cells
    Vilela, MF
    Freundlich, A
    Monier, C
    Newman, F
    Aguilar, L
    JOURNAL OF CRYSTAL GROWTH, 1998, 188 (1-4) : 311 - 316
  • [42] High-efficiency crystalline silicon solar cells: status and perspectives
    Battaglia, Corsin
    Cuevas, Andres
    De Wolf, Stefaan
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) : 1552 - 1576
  • [43] High-Efficiency Heterojunction Solar Cells on Crystalline Germanium Substrates
    Hekmatshoar, Bahman
    Shahrjerdi, Davood
    Hopstaken, Marinus
    OXIDE-BASED MATERIALS AND DEVICES V, 2014, 8987
  • [44] High-efficiency antireflection nanostructural optical coatings for solar cells
    Gadomskii, O. N.
    Altunin, K. K.
    Ushakov, N. M.
    Kosobudskii, I. D.
    Podvigalkin, V. Ya.
    Kulbatskii, D. M.
    TECHNICAL PHYSICS, 2010, 55 (07) : 996 - 1002
  • [45] High-efficiency antireflection nanostructural optical coatings for solar cells
    O. N. Gadomskii
    K. K. Altunin
    N. M. Ushakov
    I. D. Kosobudskii
    V. Ya. Podvigalkin
    D. M. Kulbatskii
    Technical Physics, 2010, 55 : 996 - 1002
  • [46] High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment
    Zhou, Huiqiong
    Zhang, Yuan
    Seifter, Jason
    Collins, Samuel D.
    Luo, Chan
    Bazan, Guillermo C.
    Thuc-Quyen Nguyen
    Heeger, Alan J.
    ADVANCED MATERIALS, 2013, 25 (11) : 1646 - 1652
  • [47] STUDY OF THE PHYSICAL PARAMETERS ON THE GaAs SOLAR CELL EFFICIENCY
    Chahid, E.
    Oumhanad, M. I.
    Feddaoui, M.
    Malaoui, A.
    JOURNAL OF OVONIC RESEARCH, 2017, 13 (03): : 119 - 128
  • [48] High-efficiency numerical modeling of rGO/P3HT solar cells using SCAPS-1D
    Najim, Abdelhafid
    Moulaoui, Lhouceine
    Bakour, Anass
    Bajjou, Omar
    Rahmani, Khalid
    JOURNAL OF OPTICS-INDIA, 2024,
  • [49] Towards high efficiency nanowire solar cells
    Otnes, Gaute
    Borgstrom, Magnus T.
    NANO TODAY, 2017, 12 : 31 - 45
  • [50] An analytical approach for modeling of high-efficiency crystalline silicon solar cells with homo-hetero junctions
    Bashiri, Hadi
    Karami, Mohammad Azim
    Nejad, Shahram Mohammad
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 111