Modeling and simulation of high-efficiency GaAs PIN solar cells

被引:18
|
作者
Imran, Ali [1 ]
Sulaman, Muhammad [2 ,3 ]
Song, Yong [2 ]
Eric, Deborah [2 ]
Zahid, Muhammad Noaman [2 ]
Yousaf, Muhammad [4 ]
Saleem, Muhammad Imran [3 ]
Li, Maoyuan [2 ]
Li, Duo [1 ]
机构
[1] Peking Univ, State Key Lab Artificial Microstruct & Mesoscop, Sch Phys, Beijing 100871, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Precis Optoelect Measurement Inst, Sch Opt & Photon, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Sch Phys, Beijing 100081, Peoples R China
[4] Peking Univ, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar cell; Mobility; Lifetime; Recombination; SURFACE RECOMBINATION VELOCITY; RENEWABLE ENERGY; DIFFUSION LENGTH; LIFETIME; SEMICONDUCTORS; OPTIMIZATION; DIODES; SI;
D O I
10.1007/s10825-020-01583-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A theoretical model for GaAs-based solar cells with PIN structure is proposed herein. The effect of varying key parameters on the conversion efficiency is investigated. The simulations are performed using COMSOL Multiphysics software. The mobilities of electrons and holes are varied in combination with the lifetime (LT). As a result, a maximum efficiency of 10.81% is achieved by setting the electron and hole mobility to 1.5k cm(2) V-1 s(-1)and 0.3k cm(2) V-1 s(-1), respectively. The electron and hole carrier LT are 3 ns and 7 ns, respectively, for the maximum output. The effect of the surface recombination velocity (SRV) is also studied, and a maximum efficiency of 13.75% is achieved for an SRV of 1k ms(-1)for electrons and holes. The results show that higher photovoltaic efficiencies can be achieved by increasing the mobility and carrier LT while decreasing the surface recombination velocities.
引用
收藏
页码:310 / 316
页数:7
相关论文
共 50 条
  • [21] Fe gettering for high-efficiency solar cell fabrication
    Terakawa, T
    Wang, D
    Nakashima, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (6A): : 4060 - 4061
  • [22] Simulation of High-Efficiency Crystalline Silicon Solar Cells With Homo-Hetero Junctions
    Zhong, Sihua
    Hua, Xia
    Shen, Wenzhong
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (07) : 2104 - 2110
  • [23] High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells
    Wang, Qi
    PHILOSOPHICAL MAGAZINE, 2009, 89 (28-30) : 2587 - 2598
  • [24] Potassium Iodide Doping Strategy for High-Efficiency Perovskite Solar Cells Revealed by Ultrafast Spectroscopy
    Gao, Lei
    Zhang, Yong
    Wei, Xin
    Zheng, Ting
    Zhao, Weijie
    Zhang, Xinhai
    Lu, Junpeng
    Ni, Zhenhua
    Liu, Hongwei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (02) : 711 - 717
  • [25] Gallium-Doped Silicon for High-Efficiency Commercial Passivated Emitter and Rear Solar Cells
    Grant, Nicholas E.
    Altermatt, Pietro P.
    Niewelt, Tim
    Post, Regina
    Kwapil, Wolfram
    Schubert, Martin C.
    Murphy, John D.
    SOLAR RRL, 2021, 5 (04)
  • [26] Cost effective process for high-efficiency solar cells
    Lee, S. H.
    SOLAR ENERGY, 2009, 83 (08) : 1285 - 1289
  • [27] High-Efficiency "Green" Quantum Dot Solar Cells
    Pan, Zhenxiao
    Mora-Sero, Ivan
    Shen, Qing
    Zhang, Hua
    Li, Yan
    Zhao, Ke
    Wang, Jin
    Zhong, Xinhua
    Bisquert, Juan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (25) : 9203 - 9210
  • [28] Cost effective process for high-efficiency solar cells
    Lee, S. H.
    IEEE NMDC 2006: IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE 2006, PROCEEDINGS, 2006, : 526 - 528
  • [29] HIGH-EFFICIENCY A-SI SOLAR-CELLS
    ASHIDA, Y
    FUKUDA, N
    OPTOELECTRONICS-DEVICES AND TECHNOLOGIES, 1994, 9 (04): : 589 - 598
  • [30] On the Device Physics of High-Efficiency Ternary Solar Cells
    Upreti, Tanvi
    Wang, Yuming
    Gao, Feng
    Kemerink, Martijn
    SOLAR RRL, 2022, 6 (11)