Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles

被引:45
|
作者
Surmeneva, Maria [1 ]
Lapanje, Ales [2 ]
Chudinova, Ekaterina [1 ]
Ivanova, Anna [1 ]
Koptyug, Andrey [3 ]
Loza, Kateryna [4 ,5 ]
Prymak, Oleg [4 ,5 ]
Epple, Matthias [4 ,5 ]
Ennen-Roth, Franka [5 ,6 ]
Ulbricht, Mathias [5 ,6 ]
Rijavec, Tomaz [2 ]
Surmenev, Roman [1 ]
机构
[1] Natl Res Tomsk Polytech Univ, Phys Mat Sci & Composite Mat Ctr, Tomsk, Russia
[2] Jozef Stefan Inst, Ljubljana, Slovenia
[3] Mid Sweden Univ, Ostersund, Sweden
[4] Univ Duisburg Essen, Inorgan Chem, Essen, Germany
[5] Ctr Nanointegrat Duisburg Essen CeNIDE, Essen, Germany
[6] Univ Duisburg Essen, Tech Chem, Essen, Germany
基金
俄罗斯科学基金会;
关键词
Additive manufacturing; Electron beam melting; Electrophoretic deposition; Nanoparticles; Antimicrobial assay; Bacteriostatic activity; POROUS BIOMATERIALS; TITANIUM; SURFACES; HYDROXYAPATITE; IMPLANTS; CELLS; SIZE; BIOCOMPATIBILITY; REGENERATION; FABRICATION;
D O I
10.1016/j.apsusc.2019.03.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of an ideal bone graft substitute has been a long-standing effort, and a number of strategies have been developed to improve bone regeneration. Electron beam melting (EBM) is an additive manufacturing method allowing for the production of porous implants with highly defined external dimensions and internal architectures. The increasing surface area of the implant may also increase the abilities of pathogenic microorganisms to adhere to the surfaces and form a biofilm, which may result in serious complications. The aim of this study was to explore the modifications of Ti6Al4V alloy scaffolds to reduce the abilities of bacteria to attach to the EBM-manufactured implant surface. The layers composed of silver (Ag), calcium phosphate (CaP) nanoparticles (NPs) and combinations of both were formed on the EBM-fabricated metallic scaffolds by electrophoretic deposition in order to provide them with antimicrobial properties. The assay of bacterial colonization on the surface was performed with the exposure of scaffold surfaces to Staphylococcus aureus cells for up to 17 h. Principal component analysis (PCA) was used to assess the relationships between different surface features of the studied samples and bacterial adhesion. The results indicate that by modifying the implant surface with appropriate nanostructures that change the hydrophobicity and the surface roughness at the nano scale, physical cues are provided that disrupt bacterial adhesion. Our results clearly show that AgNPs at a concentration of approximately 0.02 mg/cm(2) that were deposited together with CaPNPs covered by positively charge polyethylenimine (PEI) on the surface of EBM-sintered Ti6Al4V scaffolds hindered bacterial growth, as the total number of attached cells (NAC) of S. aureus remained at the same level during the 17 h of exposure, which indicates bacteriostatic activity.
引用
收藏
页码:822 / 829
页数:8
相关论文
共 50 条
  • [41] Variable amplitude loading of additively manufactured Ti6Al4V subjected to surface post processes
    Kahlin, M.
    Ansell, H.
    Kerwin, A.
    Smith, B.
    Moverare, J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 142
  • [42] On study of process induced defects-based fatigue performance of additively manufactured Ti6Al4V alloy
    Bhandari, Litton
    Gaur, Vidit
    ADDITIVE MANUFACTURING, 2022, 60
  • [43] Surface roughness effect on multiaxial fatigue behavior of additively manufactured Ti6Al4V alloy
    Renzo D.A.
    Maletta C.
    Sgambitterra E.
    Furgiuele F.
    Berto F.
    International Journal of Fatigue, 2022, 163
  • [44] Precise design, preparation, and biomechanical evaluation of customized additively manufactured Ti6Al4V porous fusion cage
    Wang, Hongwei
    Wan, Yi
    Meng, Fanchen
    Zhao, Geng
    Liu, Xinyu
    Zhang, Shuai
    Su, Weidong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 8198 - 8210
  • [45] Effect of Spatially Varying Thermokinetics on the Electrochemical Response of Laser Additively Manufactured Ti6Al4V
    Ho, Yee-Hsien
    Mazumder, Sangram
    Pantawane, Mangesh V.
    Dahotre, Narendra B.
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (04)
  • [46] Ball end milling machinability of additively and conventionally manufactured Ti6Al4V tilted surfaces
    Lizzul, Lucia
    Sorgato, Marco
    Bertolini, Rachele
    Ghiotti, Andrea
    Bruschi, Stefania
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 72 : 350 - 360
  • [47] An Investigation of Mechanical Properties of Additively Manufactured Regolith Reinforced Titanium Alloy [Ti6Al4V]
    Afrouzian, Ali
    Traxel, Kellen D.
    Bandyopadhyay, Amit
    METAL-MATRIX COMPOSITES: ADVANCES IN PROCESSING, CHARACTERIZATION, PERFORMANCE AND ANALYSIS, 2022, : 107 - 112
  • [48] The influence of microstructure heterogeneity on the tensile deformation behaviour of cold metal transfer additively manufactured Ti6Al4V
    Lasisi, Adedoyin Michael
    Farabi, Ehsan
    Klein, Thomas
    Primig, Sophie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [49] Mechanical and biocompatibility studies on additively manufactured Ti6Al4V porous structures infiltrated with hydroxyapatite for implant applications
    Arivazhagan, Adhiyamaan
    Mani, Kalayarasan
    Kamarajan, Banu Pradheepa
    Aashique, A. G. S. Saai
    Vijayaragavan, S.
    Riju, Arthik A.
    Rajeshkumar, G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [50] Poly(methyl methacrylate)-silica-calcium phosphate coatings for the protection of Ti6Al4V alloy
    Uvida, Mayara Carla
    Pulcinelli, Sandra Helena
    Santilli, Celso Valentim
    Hammer, Peter
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2023, 106 (03) : 627 - 638