Hamiltonian Mechanics of Stochastic Acceleration

被引:4
|
作者
Burby, J. W. [1 ]
Zhmoginov, A. I. [2 ]
Qin, H. [1 ,3 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
关键词
VARIATIONAL INTEGRATORS; TURBULENCE; DIFFUSION; EQUATIONS; ELECTRONS; PROTONS; SYSTEMS; WAVE;
D O I
10.1103/PhysRevLett.111.195001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
引用
收藏
页数:5
相关论文
共 50 条