Hamiltonian Mechanics of Stochastic Acceleration

被引:4
|
作者
Burby, J. W. [1 ]
Zhmoginov, A. I. [2 ]
Qin, H. [1 ,3 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
关键词
VARIATIONAL INTEGRATORS; TURBULENCE; DIFFUSION; EQUATIONS; ELECTRONS; PROTONS; SYSTEMS; WAVE;
D O I
10.1103/PhysRevLett.111.195001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On Hamiltonian continuum mechanics
    Pavelka, Michal
    Peshkov, Ilya
    Klika, Vaclav
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 408
  • [2] Dirac algebroids in Lagrangian and Hamiltonian mechanics
    Grabowska, Katarzyna
    Grabowski, Janusz
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) : 2233 - 2253
  • [3] Stochastic discrete Hamiltonian variational integrators
    Holm, Darryl D.
    Tyranowski, Tomasz M.
    BIT NUMERICAL MATHEMATICS, 2018, 58 (04) : 1009 - 1048
  • [4] The Port-Hamiltonian Structure of Continuum Mechanics
    Rashad, Ramy
    Stramigioli, Stefano
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [5] Hamiltonian analysis for linearly acceleration-dependent Lagrangians
    Cruz, Miguel
    Gomez-Cortes, Rosario
    Molgado, Alberto
    Rojas, Efrain
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
  • [6] Nonlinear aspects of stochastic particle acceleration
    Lemoine, Martin
    Murase, Kohta
    Rieger, Frank
    PHYSICAL REVIEW D, 2024, 109 (06)
  • [7] Stochastic Acceleration of Energetic Particles in the Heliosphere
    Zhang, M.
    Lee, M. A.
    SPACE SCIENCE REVIEWS, 2013, 176 (1-4) : 133 - 146
  • [8] WEAK SYMPLECTIC SCHEMES FOR STOCHASTIC HAMILTONIAN EQUATIONS
    Anton, Cristina
    Deng, Jian
    Wong, Yau Shu
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 43 : 1 - 20
  • [9] Fractional generalized Hamiltonian mechanics
    Li, Lin
    Luo, Shao-Kai
    ACTA MECHANICA, 2013, 224 (08) : 1757 - 1771
  • [10] Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Nonconvex Stochastic Optimization: Nonasymptotic Performance Bounds and Momentum-Based Acceleration
    Gao, Xuefeng
    Gurbuzbalaban, Mert
    Zhu, Lingjiong
    OPERATIONS RESEARCH, 2021, : 2931 - 2947