Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints

被引:162
作者
Daubechies, Ingrid [1 ]
Fornasier, Massimo [1 ]
Loris, Ignace [2 ]
机构
[1] Princeton Univ, Program Computat & Appl Math, Princeton, NJ 08544 USA
[2] Vrije Univ Brussel, Dienst Theoret Natuurkunde, B-1050 Brussels, Belgium
基金
美国国家科学基金会;
关键词
Linear inverse problems; Sparse recovery; Projected gradient method;
D O I
10.1007/s00041-008-9039-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Regularization of ill-posed linear inverse problems via l(1) penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an l(1) penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to l(1)-constraints, using a gradient method, with projection on l(1)-balls. The corresponding algorithm uses again iterative soft-thresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence
引用
收藏
页码:764 / 792
页数:29
相关论文
共 36 条
[1]   On the projected subgradient method for nonsmooth convex optimization in a Hilbert space [J].
Alber, YI ;
Iusem, AN ;
Solodov, MV .
MATHEMATICAL PROGRAMMING, 1998, 81 (01) :23-35
[2]  
BREGMAN LM, 1965, DOKL AKAD NAUK SSSR+, V162, P487
[3]   New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities [J].
Candès, EJ ;
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) :219-266
[4]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[5]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[6]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[7]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335
[8]  
Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7
[9]   Adaptive wavelet Galerkin methods for linear inverse problems [J].
Cohen, A ;
Hoffmann, M ;
Reiss, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1479-1501
[10]   Adaptive wavelet methods II - Beyond the elliptic case [J].
Cohen, A ;
Dahmen, W ;
DeVore, R .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (03) :203-245