TiO2-Si- or SrTiO3-Si-impregnated PVA-based low-cost proton exchange membranes for application in microbial fuel cell

被引:10
作者
Bhowmick, G. D. [1 ]
Dhar, Dhruba [2 ]
Ghangrekar, M. M. [3 ]
Banerjee, R. [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Agr & Food Engn, Kharagpur 721302, W Bengal, India
[2] Birla Inst Technol, Dept Bioengn, Ranchi 835215, Bihar, India
[3] Indian Inst Technol Kharagpur, Dept Civil Engn, Kharagpur 721302, W Bengal, India
关键词
Hygroscopic oxides; Microbial fuel cell; Polyvinyl alcohol; Proton conductivity; Proton exchange membrane; WALLED CARBON NANOTUBE; ETHER ETHER KETONE; BIOELECTRICITY GENERATION; NANOCOMPOSITE MEMBRANES; ELECTRICITY-GENERATION; CATHODE CATALYSTS; COCONUT SHELL; PERFORMANCE; NAFION; NANOPARTICLES;
D O I
10.1007/s11581-020-03779-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membranes (PEMs) were synthesized in polyvinyl alcohol (PVA) matrix by impregnating TiO2-Si or SrTiO3-Si as proton exchanger for microbial fuel cells (MFCs). These PEMs were physically characterized, which approved the presence of hygroscopic oxides like SiO(2)to increase the proton transfer due to the formation of Si-H along with the water channelling through TiO2 or SrTiO3 induced microstructural modifications. Chemical characterization techniques further illustrated their comparable performance to the commercially available Nafion-117 and superior performance than bare PVA membrane. Polarization curves for MFCs using TiO2-Si- or SrTiO3-Si-based PVA membranes exhibited a power density of 6.16 +/- 0.31 W m(-3)and 5.39 +/- 0.27 W m(-3), respectively. Power density of MFC with TiO2-Si membrane was comparable to that of the MFC using Nafion-117 (6.50 +/- 0.33 W m(-3)). Thus, comparable properties and 30-folds less synthesis cost of the fabricated TiO2-Si-impregnated PVA membrane in comparison to Nafion, demonstrate its potential for real-life applications in MFC.
引用
收藏
页码:6195 / 6205
页数:11
相关论文
共 58 条
[1]   Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell [J].
Ahilan, Vignesh ;
Bhowmick, Gourav Dhar ;
Ghangrekar, Makarand M. ;
Wilhelm, Michaela ;
Rezwan, Kurosch .
IONICS, 2019, 25 (12) :5907-5918
[2]   Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes [J].
Ahilan, Vignesh ;
de Barros, Camila Cabral ;
Bhowmick, Gourav Dhar ;
Ghangrekar, Makarand M. ;
Murshed, M. Mangir ;
Wilhelm, Michaela ;
Rezwan, Kurosch .
BIOELECTROCHEMISTRY, 2019, 129 :259-269
[3]   Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells [J].
Amjadi, M. ;
Rowshanzamir, S. ;
Peighambardoust, S. J. ;
Hosseini, M. G. ;
Eikani, M. H. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) :9252-9260
[4]  
[Anonymous], 1998, STANDARD METHODS EXA
[5]   Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH [J].
Behera, Manaswini ;
Jana, Partha S. ;
More, Tanaji T. ;
Ghangrekar, M. M. .
BIOELECTROCHEMISTRY, 2010, 79 (02) :228-233
[6]   Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor [J].
Bhowmick G.D. ;
Das S. ;
Ghangrekar M.M. ;
Mitra A. ;
Banerjee R. .
Journal of The Institution of Engineers (India): Series A, 2019, 100 (04) :675-682
[7]   Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications [J].
Bhowmick, G. D. ;
Kibena-Poldsepp, E. ;
Matisen, L. ;
Merisalu, M. ;
Kook, M. ;
Kaarik, M. ;
Leis, J. ;
Sammelselg, V. ;
Ghangrekar, M. M. ;
Tammeveski, K. .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (12) :3525-3537
[8]   Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell [J].
Bhowmick, G. D. ;
Das, Sovik ;
Adhikary, K. ;
Ghangrekar, M. M. ;
Mitra, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (39) :22218-22222
[9]   Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4 [J].
Bhowmick, G. D. ;
Das, Sovik ;
Verma, H. K. ;
Neethu, B. ;
Ghangrekar, M. M. .
ELECTROCHIMICA ACTA, 2019, 310 :173-183
[10]   Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell [J].
Bhowmick, G. D. ;
Noori, Md. T. ;
Das, Indrasis ;
Neethu, B. ;
Ghangrekar, M. M. ;
Mitra, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (15) :7501-7510