Classification of EEG Signal from Imagined Writing using a Combined Autoregressive Model and Multi-Layer Perceptron.

被引:0
|
作者
Zabidi, A. [1 ]
Mansor, W. [1 ]
Lee, Khuan Y. [1 ]
Fadzal, C. W. N. F. Che Wan [1 ]
机构
[1] Univ Teknol Mara, Fac Elect Engn, Shah Alam 40450, Malaysia
来源
2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) | 2012年
关键词
Electroencephalogram; Autoregressive; Multi Layer Perceptron; MOTOR IMAGERY; MU;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
EEG signal contain massive information on brain activities which can be extracted by filtering and processing the signal at specific frequency. The similarity in the EEG signals obtained during actual and imagined writing exists and can be revealed using good representation of the signals. A technique called Autoregressive (AR) is able to model the EEG signals which can be used as input feature for Multi Layer Perceptron. In this study, the EEG signals recorded during actual and imagined writing was analyzed and classified to find the frequency range where similarity in both signals exists. The results obtained indicate that there is similarity in the signals especially at frequency of 8-13 Hz (Mu region).
引用
收藏
页数:5
相关论文
共 34 条
  • [11] Online phoneme recognition using multi-layer perceptron networks combined with recurrent non-linear autoregressive neural networks with exogenous inputs
    Bonilla Cardona, Diana A.
    Nedjah, Nadia
    Mourelle, Luiza M.
    NEUROCOMPUTING, 2017, 265 : 78 - 90
  • [12] High Dimensional Time Series Classification Based on Multi-Layer Perceptron and Moving Average Model
    Li, Jiangeng
    Xu, Changjian
    Zhang, Ting
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4067 - 4073
  • [13] Multi-layer Perceptron Combined with Radiative Transfer Model for Complex Land Surface Cloud Detection
    Deng M.-J.
    Xu X.
    Ma Y.-Y.
    Gong W.
    Jin S.-K.
    Hu R.-M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (04): : 932 - 942
  • [14] G-MLP: Graph Multi-Layer Perceptron for Node Classification Using Contrastive Learning
    Yuan, Lining
    Jiang, Ping
    Hou, Wenlei
    Huang, Wanyan
    IEEE ACCESS, 2024, 12 : 104909 - 104919
  • [16] Improving the Consistency of AHP Matrices Using a Multi-layer Perceptron-Based Model
    Antonio Gomez-Ruiz, Jose
    Karanik, Marcelo
    Ignacio Pelaez, Jose
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 41 - +
  • [17] An Efficient Approach to Model Strong PUF with Multi-Layer Perceptron using Transfer Learning
    Ali-Pour, Amir
    Hely, David
    Beroulle, Vincent
    Di Natale, Giorgio
    PROCEEDINGS OF THE TWENTY THIRD INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2022), 2022, : 464 - 469
  • [18] A Multi-Layer Perceptron Model in Analyzing Parametric Classification of Students' Assessment Results in K12
    Santos, Arman Bernard G.
    Dadiz, Bryan G.
    Liwanag, Jerome L.
    Valdez, Mari-Pearl M.
    Dela Cruz, Myen D. C.
    Avinante, Rhommel S.
    COMPUTATIONAL SCIENCE AND TECHNOLOGY (ICCST 2019), 2020, 603 : 145 - 155
  • [19] Optimizing Multi-Layer Perceptron using Variable Step Size Firefly Optimization Algorithm for Diabetes Data Classification
    Behera, Mandakini Priyadarshani
    Sarangi, Archana
    Mishra, Debahuti
    Sarangi, Shubhendu Kumar
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (04) : 124 - 139
  • [20] Predicting the water production of a solar seawater greenhouse desalination unit using multi-layer perceptron model
    Zarei, Taleb
    Behyad, Reza
    SOLAR ENERGY, 2019, 177 : 595 - 603