The complete flux scheme-Error analysis and application to plasma simulation

被引:17
作者
Liu, L. [1 ]
van Dijk, J. [1 ]
Boonkkamp, J. H. M. ten Thije [2 ]
Mihailova, D. B. [1 ]
van der Mullen, J. J. A. M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Complete flux scheme; Exponential difference scheme; Error analysis; Plasma model; SINGULAR PERTURBATION PROBLEM; GLOW-DISCHARGES; MODEL;
D O I
10.1016/j.cam.2013.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complete flux scheme (CFS) [J. ten Thije Boonkkamp, M. Anthonissen, The finite volume-complete flux scheme for advection-diffusion-reaction equations, J. Sci. Comput. 46 (1) (2011) 47-70. http://dx.doi.org/10.1007/s10915-010-9388-8] is an extension of the widely used exponential difference scheme for advection-diffusion-reaction equations. In this paper, we provide a rigorous proof that the convergence order of this scheme is 2 for all grid Peclet numbers, whereas that of the exponential difference scheme reduces to 1 for high grid Peclet numbers in the presence of source terms. The performance of both schemes is compared in two case studies: a test problem and a physical model of a parallel-plate glow discharge. The results indicate that the usage of the CFS allows a considerable reduction of the number of grid points that is required to obtain the same accuracy. The MATLAB/Octave source code that has been used in these studies has been made available. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 243
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[2]  
BERGER AE, 1981, MATH COMPUT, V37, P79, DOI 10.1090/S0025-5718-1981-0616361-0
[3]  
BERGER AE, 1980, MATH COMPUT, V35, P695, DOI 10.1090/S0025-5718-1980-0572850-8
[4]  
Bittencourt J. A., 2010, Fundamentals of Plasma Physics
[5]   A TWO-DIMENSIONAL MODEL OF DC GLOW-DISCHARGES [J].
BOEUF, JP .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (05) :1342-1349
[6]   The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations [J].
Boonkkamp, J. H. M. Ten Thije ;
Anthonissen, M. J. H. .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) :47-70
[7]  
Conte S., 1955, ELEMENTARY NUMERICAL
[8]   NUMERICAL-METHOD FOR BOUNDARY-LAYERS WITH BLOWING - EXPONENTIAL BOX SCHEME [J].
ELMISTIKAWY, TM ;
WERLE, MJ .
AIAA JOURNAL, 1978, 16 (07) :749-751
[10]   Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J].
Hagelaar, GJM ;
Pitchford, LC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) :722-733