Microscopy and tunable resistive pulse sensing characterization of the swelling of pH-responsive, polymeric expansile nanoparticles

被引:44
作者
Colby, Aaron H. [1 ]
Colson, Yolonda L. [2 ]
Grinstaff, Mark W. [1 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Brigham & Womens Hosp, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
DRUG-DELIVERY; NANOCARRIERS; PACLITAXEL; DISCRIMINATION; MICROPARTICLES; MIGRATION; PLATFORM; DEXTRAN; MODEL;
D O I
10.1039/c3nr00114h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymeric expansile nanoparticles (eNPs) that respond to a mildly acidic environment by swelling with water and expanding 2-10x in diameter represent a new responsive drug delivery system. Here, we use a variety of techniques to characterize the pH- and time-dependence of eNP swelling as this is a key property responsible for the observed in vitro and in vivo performance of eNPs. Results demonstrate a significant change in eNP volume (>350x) at pH 5.0 as seen using: scanning electron microscopy (SEM), conventional transmission electron microscopy (TEM), freeze-fracture transmission electron microscopy (ff-TEM), fluorescence microscopy, and a new nanopore based characterization technology, the qNano, which measures both individual particle size as well as overall particle concentration in situ using tunable resistive pulse sensing. eNP swelling occurs in a continuous and yet heterogeneous manner over several days and is pH dependent.
引用
收藏
页码:3496 / 3504
页数:9
相关论文
共 56 条
  • [1] Rapid and Label-Free Single-Nucleotide Discrimination via an Integrative Nanoparticle-Nanopore Approach
    Ang, Yan Shan
    Yung, Lin-Yue Lanry
    [J]. ACS NANO, 2012, 6 (10) : 8815 - 8823
  • [2] Acetal-derivatized dextran:: An acid-responsive biodegradable material for therapeutic applications
    Bachelder, Eric M.
    Beaudette, Tristan T.
    Broaders, Kyle E.
    Dashe, Jesse
    Frechet, Jean M. J.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) : 10494 - +
  • [3] In Vitro Analysis of Acetalated Dextran Microparticles as a Potent Delivery Platform for Vaccine Adjuvants
    Bachelder, Eric M.
    Beaudette, Tristan T.
    Broaders, Kyle E.
    Frechet, Jean M. J.
    Albrecht, Mark T.
    Mateczun, Alfred J.
    Ainslie, Kristy M.
    Pesce, John T.
    Keane-Myers, Andrea M.
    [J]. MOLECULAR PHARMACEUTICS, 2010, 7 (03) : 826 - 835
  • [4] Molecular-targeted nanotherapies in cancer: Enabling treatment specificity
    Blanco, Elvin
    Hsiao, Angela
    Ruiz-Esparza, Guillermo U.
    Landry, Matthew G.
    Meric-Bernstam, Funda
    Ferrari, Mauro
    [J]. MOLECULAR ONCOLOGY, 2011, 5 (06) : 492 - 503
  • [5] Nanoparticle and targeted systems for cancer therapy
    Brannon-Peppas, L
    Blanchette, JO
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (11) : 1649 - 1659
  • [6] Measurement of nanoparticles by light-scattering techniques
    Brar, Satinder K.
    Verma, M.
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2011, 30 (01) : 4 - 17
  • [7] Nanoparticles in cancer therapy and diagnosis
    Brigger, I
    Dubernet, C
    Couvreur, P
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) : 631 - 651
  • [8] Acid-degradable solid-walled microcapsules for pH-responsive burst-release drug delivery
    Broaders, Kyle E.
    Pastine, Stefan J.
    Grandhe, Sirisha
    Frechet, Jean M. J.
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (02) : 665 - 667
  • [9] (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging
    Chen, Guanying
    Shen, Jie
    Ohulchanskyy, Tymish Y.
    Patel, Nayan J.
    Kutikov, Artem
    Li, Zhipeng
    Song, Jie
    Pandey, Ravindra K.
    Agren, Hans
    Prasad, Paras N.
    Han, Gang
    [J]. ACS NANO, 2012, 6 (09) : 8280 - 8287
  • [10] Biologically Responsive Polymeric Nanoparticles for Drug Delivery
    Colson, Yolonda L.
    Grinstaff, Mark W.
    [J]. ADVANCED MATERIALS, 2012, 24 (28) : 3878 - 3886