On the concentration of points of polynomial maps and applications

被引:31
作者
Cilleruelo, Javier [3 ,4 ]
Garaev, Moubariz Z. [2 ]
Ostafe, Alina [1 ]
Shparlinski, Igor E. [1 ]
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
[3] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[4] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
瑞士国家科学基金会; 澳大利亚研究理事会;
关键词
Polynomial congruences; Vinogradov mean value theorem; Additive combinatorics; Orbits; Visible points;
D O I
10.1007/s00209-011-0959-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a polynomial f is an element of F-p[X] we obtain upper bounds on the number of points (x, f (x)) modulo a prime p which belong to an arbitrary square with the side length H. Our results in particular are based on the Vinogradov mean value theorem. Using these estimates we obtain results on the expansion of orbits in dynamical systems generated by nonlinear polynomials and we obtain an asymptotic formula for the number of visible points on the curve f(x) equivalent to y (mod p), where f is an element of F-p[X] is a polynomial of degree d >= 2. We also use some recent results and techniques from arithmetic combinatorics to study the values (x, f (x)) in more general sets.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 19 条
[1]   THE NUMBER OF INTEGRAL POINTS ON ARCS AND OVALS [J].
BOMBIERI, E ;
PILA, J .
DUKE MATHEMATICAL JOURNAL, 1989, 59 (02) :337-357
[2]   MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS [J].
Bourgain, J. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (01) :1-32
[3]  
Bukh B., P LOND MATH IN PRESS
[4]   On the concentration of points on modular hyperbolas and exponential curves [J].
Chan, Tsz Ho ;
Shparlinski, Igor E. .
ACTA ARITHMETICA, 2010, 142 (01) :59-66
[5]   Concentration of Points on Two and Three Dimensional Modular Hyperbolas and Applications [J].
Cilleruelo, Javier ;
Garaev, Moubariz Z. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (04) :892-904
[6]   The sum-product estimate for large subsets of prime fields [J].
Garaev, M. Z. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) :2735-2739
[7]   On the distribution of rational functions along a curve over FP and residue races [J].
Granville, A ;
Shparlinski, IE ;
Zaharescu, A .
JOURNAL OF NUMBER THEORY, 2005, 112 (02) :216-237
[8]   EXPANSION OF ORBITS OF SOME DYNAMICAL SYSTEMS OVER FINITE FIELDS [J].
Gutierrez, Jaime ;
Shparlinski, Igor E. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) :232-239
[9]  
Hart D., 2009, PREPRINT
[10]   AN EXPLICIT INCIDENCE THEOREM IN Fp [J].
Helfgott, Harald Andres ;
Rudnev, Misha .
MATHEMATIKA, 2011, 57 (01) :135-145